Free Access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 508 - 521
DOI https://doi.org/10.1051/cocv:2005017
Published online 15 September 2005
  1. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349–381. [CrossRef] [Google Scholar]
  2. M. Balabane, J. Dolbeault and H. Ounaies, Nodal solutions for a sublinear elliptic equation. Nonlinear Analysis TMA 52 (2003) 219–237. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bahri and P.L. Lions, Solutions of superlinear elliptic equations and their Morse indices. Comm. Pure Appl. Math. 45 (1992) 1205–1215. [CrossRef] [MathSciNet] [Google Scholar]
  4. T. Bartsch, K.C. Chang and Z.Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z. 233 (2000) 655–677. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equation. Comm. Partial Differ. Equ. 29 (2004) 25–42. [CrossRef] [Google Scholar]
  6. T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations. Topol. Methods Nonlinear Anal. 22 (2003) 1–14. [MathSciNet] [Google Scholar]
  7. T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 259–281. [CrossRef] [MathSciNet] [Google Scholar]
  8. V. Benci and D. Fortunato, A remark on the nodal regions of the solutions of some superlinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 123–128. [MathSciNet] [Google Scholar]
  9. H. Brezis and T. Kato, Remarks on the Scrödinger operator with singular complex potentials. J. Pure Appl. Math. 33 (1980) 137–151. [Google Scholar]
  10. A. Castro, J. Cossio and J.M. Neuberger, A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems. Electron. J. Differ. Equ. 2 (1998) 18. [Google Scholar]
  11. L. Damascelli, On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in Formula . Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000) 175–181. [MathSciNet] [Google Scholar]
  12. L. Damascelli, M. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Ann. Inst. H. Poincaré. Anal. Non Linéaire 16 (1999) 631–652. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Damascelli and F. Pacella, Monotonicity and symmetry of solutions of p-Laplace equations, Formula , via the moving plane method. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998) 689–707. [MathSciNet] [Google Scholar]
  14. L. Damascelli and F. Pacella, Monotonicity and symmetry results for p-Laplace equations and applications. Adv. Differential Equations 5 (2000) 1179–1200, [MathSciNet] [Google Scholar]
  15. P. Drábek and S.B. Robinson, On the Generalization of the Courant Nodal Domain Theorem. J. Differ. Equ. 181 (2002) 58–71. [CrossRef] [Google Scholar]
  16. M. Grossi, F. Pacella and S.L. Yadava, Symmetry results for perturbed problems and related questions. Topol. Methods Nonlinear Anal. (to appear). [Google Scholar]
  17. S.J. Li and M. Willem, Applications of local linking to critical point theory. J. Math. Anal. Appl. 189 (1995) 6–32. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Moser, A new proof of De Giorgi's theorem. Comm. Pure Appl. Math. 13 (1960) 457–468. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Mugnai, Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem. Nonlinear Differ. Equ. Appl. 11 (2004) 379–391. [CrossRef] [Google Scholar]
  20. F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities. J. Funct. Anal. 192 (2002) 271–282 [CrossRef] [MathSciNet] [Google Scholar]
  21. P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI (1986). [Google Scholar]
  22. M. Struwe, Variational Methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Springer-Verlag (1990). [Google Scholar]
  23. Z.Q. Wang, On a superlinear elliptic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 43–57. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.