Free Access
Issue |
ESAIM: COCV
Volume 12, Number 1, January 2006
|
|
---|---|---|
Page(s) | 139 - 168 | |
DOI | https://doi.org/10.1051/cocv:2005035 | |
Published online | 15 December 2005 |
- R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
- E.L. Allgower and K. Georg, Continuation and Path Following. Acta Numerica (1992). [Google Scholar]
- J.M. Bismuth, Large Deviations and the Malliavin Calculus. Birkhäuser (1984). [Google Scholar]
- L. Cesari, Functional analysis and Galerkin's method. Mich. Math. J. 11 (1964) 385–418. [CrossRef] [Google Scholar]
- A. Chelouah and Y. Chitour, On the controllability and trajectories generation of rolling surfaces. Forum Math. 15 (2003) 727–758. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Chitour, Applied and theoretical aspects of the controllability of nonholonomic systems. Ph.D. thesis, Rutgers University (1996). [Google Scholar]
- Y. Chitour, Path planning on compact Lie groups using a continuation method. Syst. Control Lett. 47 (2002) 383–391. [CrossRef] [Google Scholar]
- Y. Chitour and H.J. Sussmann, Line-integral estimates and motion planning using a continuation method. Essays on Math. Robotics, J. Baillieul, S.S. Sastry and H.J. Sussmann Eds., IMA. Math. Appl. 104 (1998) 91–125. [Google Scholar]
- S.N. Chow and J.K. Hale, Methods of Bifurcation Theory. Springer, New York 251 (1982). [Google Scholar]
- A. Divelbiss and J.T. Wen, A Path Space Approach to Nonholonomic Motion Planning in the Presence of Obstacles. IEEE Trans. Robotics Automation 13 (1997) 443–451. [CrossRef] [Google Scholar]
- Ge Zhong, Horizontal Path Spaces and Carnot-Carathéodory Metrics. Pacific J. Math. 161 (1993) 255–286. [MathSciNet] [Google Scholar]
- K.A. Grasse and H.J. Sussmann, Global controllability by nice controls, Nonlinear controllability and optimal control. Dekker, NY. Mono. Text. Pure Appl. Math. 133 (1990) 33–79. [Google Scholar]
- J.K. Hale, Applications of alternative problems. Lectures notes, Brown University (1971). [Google Scholar]
- M.W. Hirsch, Differential Topology. Springer, New York (1976). [Google Scholar]
- V. Jurdjevic, Geometric control theory. Cambridge Studies in Adv. Math., Cam. Univ. Press (1997). [Google Scholar]
- G. Lafferriere, and H.J. Sussmann, Motion planning for controllable systems without drift, in Proc. Int. Conf. Robot. Auto. Sacramento, CA (1991) 1148–1153. [Google Scholar]
- E.B. Lee and L. Markus, Foundations of Optimal Control Theory. Wiley, New York (1967). [Google Scholar]
- J. Leray and J. Schauder, Topologie et équations fonctionelles. Ann. Sci. Ecole Norm. Sup. 51 (1934) 45–78. [MathSciNet] [Google Scholar]
- T.Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica (1997) 399–436. [Google Scholar]
- W. Liu, An approximation algorithm for nonholonomic systems. SIAM J. Control Optim. 35 (1997) 1328–1365. [Google Scholar]
-
W. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank 2 distributions. Memoirs of the AMS,
564 118 (1995). [Google Scholar]
- P. Martin, Contribution à l'étude des systèmes différentiellement plats. Ph.D. thesis, École des Mines de Paris, Paris, France (1992). [Google Scholar]
- R. Montgomery, Abnormal Optimal Controls and Open Problems in Nonholonomic Steering. J. Dyn. Cont. Sys. 1 Plenum Pub. Corp. (1995) 49–90. [Google Scholar]
- R.M. Murray and S.S. Sastry, Steering nonholonomic systems using sinusoids, in Proc. IEEE Conference on Decision and Control (1990). [Google Scholar]
- Cz. Olech, On the Wazewski equation, in Proc. of the conference, Topological methods in Differential Equations and Dynamical systems, Krakow (1996). Univ. Iagel. Acta Math. 36 (1998) 55–64. [Google Scholar]
- P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129 (1989) 1–60. [CrossRef] [Google Scholar]
- S.L. Richter and R.A. Decarlo, Continuation methods: Theory and Application. IEEE Trans. Circuits Syst. 30 (1983). [Google Scholar]
- E.D. Sontag, Mathematical Control Theory. Texts Appl. Math. 6, Springer-Verlag, New York, 2nd edition (1998). [Google Scholar]
- P. Souères and J.P. Laumond, Shortest paths synthesis for a car-like robot. IEEE Trans. Aut. Cont. 41 (1996) 672–688. [Google Scholar]
- R. Strichartz, Sub-Riemannian Geometry. J. Diff. Geom. 24 (1983) 221–263. [Google Scholar]
- H.J. Sussmann, A Continuation Method for Nonholonomic Path-finding Problems, in Proceedings of the 32nd IEEE CDC, San Antonio, TX (Dec. 1993). [Google Scholar]
-
H.J. Sussmann, New Differential Geometric Methods in Nonholonomic Path Finding, in Systems, Models, and Feedback, A. Isidori and T.J. Tarn Eds. Birkh
user, Boston (1992). [Google Scholar]
- T. Wazewski, Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes. Ann. Soc. Polon. Math. 20 (1947). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.