Free Access
Volume 14, Number 1, January-March 2008
Page(s) 192 - 209
Published online 21 September 2007
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125–145. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337–403. [Google Scholar]
  3. J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. Roy. Soc. London A 306 (1982) 557–611. [Google Scholar]
  4. J.M. Ball, Some open questions in elasticity. Geometry, mechanics, and dynamics. Springer, New York (2002) 3–59. [Google Scholar]
  5. J.M. Ball, J. Currie and P. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Func. Anal. 41 (1981) 135–174. [Google Scholar]
  6. J.M. Ball and F. Murat, Formula -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225–253. [Google Scholar]
  7. P. Bauman, N. Owen and D. Phillips, Maximum Principles and a priori estimates for a class of problems in nonlinear elasticity. Ann. Inst. H. Poincaré Anal. non Linéaire 8 (1991) 119–157. [Google Scholar]
  8. P. Bauman, N. Owen and D. Phillips, Maximal smoothness of solutions to certain Euler-Lagrange equations from noninear elasticity. Proc. Roy. Soc. Edinburgh 119A (1991) 241–263. [Google Scholar]
  9. R. Coifman, P. L. Lions, Y. Meyer and S. Semmes, Compensated compactness and hardy spaces. J. Math. Pures. Appl. 72 (1993) 247–286. [Google Scholar]
  10. C. Horgan and D. Polignone, Cavitation in nonlinearly elastic solids; A review. Appl. Mech. Rev. 48 (1995) 471–485. [Google Scholar]
  11. R. Knops and C. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch. Rational Mech. Anal. 86 (1984) 233–249. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Müller, Higher integrability of determinants and weak convergence in Formula J. reine angew. Math. 412 (1990) 20–34. [Google Scholar]
  13. R. Ogden, Large-deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. Edinburgh 328A (1972) 567–583. [Google Scholar]
  14. P. Quintela-Estevez, Critical point in the energy of hyperelastic materials. RAIRO: Math. Modél. Numér. Anal. 25 (1990) 103–132. [Google Scholar]
  15. J. Sivaloganathan, The generalized Hamilton-Jacobi inequality and the stability of equilibria in nonlinear elasticity. Arch. Rational Mech. Anal. 107 (1989) 347–369. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Sivaloganathan, Singular minimizers in the calculus of variations: a degenerate form of cavitation. Ann. Inst. H. Poincaré Anal. non linéaire 9 (1992) 657–681. [Google Scholar]
  17. J. Sivaloganathan, On the stability of cavitating equilibria. Q. Appl. Math. 53 (1995) 301–313. [Google Scholar]
  18. J. Spector, Linear deformations as global minimizers in nonlinear elasticity. Q. Appl. Math. 52 (1994) 59–64. [Google Scholar]
  19. V. Šverák, Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100 (1988) 105–127. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Taheri, Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations. Proc. Amer. Math. Soc. 131 (2003) 3101–3107. [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Zhang, Polyconvexity and stability of equilibria in nonlinear elasticity. Quart. J. Mech. appl. Math. 43 (1990) 215–221. [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Zhang, Energy minimizers in nonlinear elastostatics and the implicit function theorem. Arch. Rational Mech. Anal. 114 (1991) 95–117. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.