Free Access
Issue
ESAIM: COCV
Volume 14, Number 2, April-June 2008
Page(s) 381 - 409
DOI https://doi.org/10.1051/cocv:2007058
Published online 20 March 2008
  1. G. Carlier and R. Tahraoui, On some optimal control problems governed by a state equation with memory. ESAIM: COCV (to appear) [Google Scholar]
  2. M. Drakhlin, On the variational problem in the space of absolutely continuous functions. Nonlin. Anal. TMA 23 (1994) 1345–1351. [CrossRef] [Google Scholar]
  3. M. Drakhlin and E. Litsyn, On the variation problem for a family of functionals in the space of absolutly continuous functions. Nonlin. Anal. TMA 26 (1996) 463–468. [CrossRef] [Google Scholar]
  4. M.E. Drakhlin and E. Stepanov, On weak lower semi-continuity for a class of functionals with deviating argument. Nonlin. Anal. TMA 28 (1997) 2005–2015. [CrossRef] [Google Scholar]
  5. M.E. Drakhlin, E. Litsyn and E. Stepanov, Variational methods for a class of nonlocal functionals. Comput. Math. Appl 37 (1999) 79–100. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  6. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Inc. (1992). [Google Scholar]
  7. L. Freddi, Limits of control problems with weakly converging nonlocal input operators. Calculus of variations and optimal control (Haifa, 1998), Math. 411, Chapman Hall/CRC, Boca Raton, FL (2000) 117–140. [Google Scholar]
  8. A.A. Gruzdev and S.A. Gusarenko, On reduction of variational problems to extremal problems without constraints. Russians mathematics 38 (1994) 37–47. [Google Scholar]
  9. E. Jouini, P.F. Koehl and N. Touzi, Optimal investment with taxes: an optimal control problem with endogeneous delay. Nonlin. Anal. TMA 37 (1999) 31–56. [CrossRef] [Google Scholar]
  10. E. Jouini, P.F. Koehl and N.Touzi, Optimal investment with taxes: an existence result. J. Math. Economics 33 (2000) 373–388. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.A. Kamenskii, Variational and boundary value problems with deviating argument. Diff. Equ 6 (1970) 1349–1358. [Google Scholar]
  12. G.A. Kamenskii, On some necessary conditions of functionals with deviating argument. Nonlin. Anal. TMA 17 (1991) 457–464. [CrossRef] [Google Scholar]
  13. G.A. Kamenskii, Boundary value problems for differential-difference equations arising from variational problems. Nonlin. Anal. TMA 18 (1992) 801–813. [CrossRef] [Google Scholar]
  14. P.L. Lions and B. Larrouturou, Optimisation et commande optimale, méthodes mathématiques pour l'ingénieur, cours de l'École Polytechnique, Palaiseau, France. [Google Scholar]
  15. L. Samassi, Calculus of variation for funtionals with deviating arguments. Ph.D. thesis, University Paris-Dauphine, France (2004). [Google Scholar]
  16. L. Samassi and R. Tahraoui, Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés ? C.R. Acad. Sci. Paris Ser 338 (2004) 611–616. [Google Scholar]
  17. J.A. Wheeler and R.P. Feynman, Classical electrodynamics in term of direct interparticle actions. Rev. Modern Phys 21 (1949) 425–433. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.