Free Access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 411 - 426
DOI https://doi.org/10.1051/cocv:2008031
Published online 26 April 2008
  1. D. Arcoya, S. Barile and P.J. Martinez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition. Preprint. [Google Scholar]
  2. D. Arcoya and P.J. Martinez-Aparicio, Quasilinear equations with natural growth Rev. Mat. Iberoamericana (to appear). [Google Scholar]
  3. D. Arcoya, J. Carmona, T. Leonori, P.J. Martínez, L. Orsina and F. Petitta, Quadratic quasilinear equations with general singularities. Preprint. [Google Scholar]
  4. A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 347–364. [Google Scholar]
  5. L. Boccardo, Some nonlinear Dirichlet problems in Formula involving lower order terms in divergence form, in Progress in elliptic and parabolic partial differential equations (Capri, 1994), Pitman Res. Notes Math. Ser. 350, Longman, Harlow (1996) 43–57. [Google Scholar]
  6. L. Boccardo, Positive solutions for some quasilinear elliptic equations with natural growths. Atti Accad. Naz. Lincei 11 (2000) 31–39. [Google Scholar]
  7. L. Boccardo, Hardy potential and quasi-linear elliptic problems having natural growth terms, in Proceedings of the Conference held in Gaeta on the occasion of the 60th birthday of Haim Brezis, Progr. Nonlinear Differential Equations Appl. 63, Birkhauser, Basel (2005) 67–82. [Google Scholar]
  8. L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and L1 data. Nonlinear Anal. 19 (1992) 573–579. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Boccardo, T. Gallouët and L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. 73 (1997) 203–223. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Boccardo and D. Giachetti, Existence results via regularity for some nonlinear elliptic problems. Comm. Partial Diff. Eq. 14 (1989) 663–680. [CrossRef] [Google Scholar]
  12. L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. TMA 19 (1992) 581–597. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires. Portugaliae Math. 41 (1982) 507–534. [Google Scholar]
  14. L. Boccardo, F. Murat and J.-P. Puel, Résultats d'existence pour certains problèmes elliptiques quasi linéaires. Ann. Sc. Norm. Sup. Pisa 11 (1984) 213–235. [Google Scholar]
  15. L. Boccardo, F. Murat and J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. 152 (1988) 183–196. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Boccardo, F. Murat and J.-P. Puel, Formula -estimates for some nonlinear partial differential equations and application to an existence result. SIAM J. Math. Anal. 23 (1992) 326–333. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Brezis and L. Nirenberg, Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal. 9 (1997) 201–219. [MathSciNet] [Google Scholar]
  18. M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity. Comm. Partial Diff. Eq. 2 (1977) 193–222. [CrossRef] [Google Scholar]
  19. A. Dall'Aglio, D. Giachetti and J.-P. Puel, Nonlinear elliptic equations with natural growth in general domains. Ann. Mat. Pura Appl. 181 (2002) 407–426. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Dall'Aglio, V. De Cicco, D. Giachetti and J.-P. Puel, Existence of bounded solutions for nonlinear elliptic equations in unbounded domains. NoDEA 11 (2004) 431–450. [CrossRef] [MathSciNet] [Google Scholar]
  21. T. Del Vecchio, Strongly nonlinear problems with Hamiltonian having natural growth. Houston J. Math. 16 (1990) 7–24. [MathSciNet] [Google Scholar]
  22. D. Giachetti and F. Murat, Personal communication. [Google Scholar]
  23. J.B. Keller, On solutions of Formula . Commun. Pure Appl. Math. 10 (1957) 503–510. [CrossRef] [Google Scholar]
  24. A.C. Lazer and P.J. McKenna, On a singular nonlinear elliptic boundary-value problem. Proc. Amer. Math. Soc. 111 (1991) 721–730. [CrossRef] [MathSciNet] [Google Scholar]
  25. T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms. Adv. Nonlinear Stud. 7 (2007) 237–269. [MathSciNet] [Google Scholar]
  26. R. Osserman, On the inequality Formula . Pacific J. Math. 7 (1957) 1641–1647. [MathSciNet] [Google Scholar]
  27. A. Porretta, Existence for elliptic equations in L1 having lower order terms with natural growth. Portugaliae Math. 57 (2000) 179–190. [Google Scholar]
  28. A. Porretta, A local estimates and large solutions for some elliptic equations with absorption. Adv. Differential Equations 9 (2004) 329–351. [MathSciNet] [Google Scholar]
  29. A. Porretta and S. Segura de Leon, Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. 85 (2006) 465–492. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.-P. Puel, Existence, comportement à l'infini et stabilité dans certains problèmes quasilinéaires elliptiques et paraboliques d'ordre 2. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976) 89–119. [MathSciNet] [Google Scholar]
  31. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. [CrossRef] [MathSciNet] [Google Scholar]
  32. N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967) 721–747. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.L. Vazquez, The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs. Oxford University Press, Oxford (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.