Free Access
Volume 14, Number 4, October-December 2008
Page(s) 897 - 908
Published online 07 February 2008
  1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory, Series: Systems & Control: Foundations & Applications. Birkhauser (2003). [Google Scholar]
  2. I. Aksikas, Analysis and LQ-Optimal Control of Infinite-Dimensional Semilinear Systems: Application to a Plug Flow Reactor. Ph.D. thesis, Université Catholique de Louvain, Belgium (2005). [Google Scholar]
  3. I. Aksikas, J. Winkin and D. Dochain, Stability analysis of an infinite-dimensional linearized plug flow reactor model, in Proceedings of the 43rd IEEE Conference on Decision and Control, CDC (2004) 2417–2422. [Google Scholar]
  4. I. Aksikas, J. Winkin and D. Dochain, LQ-optimal feedback regulation of a nonisothermal plug flow reactor infinite-dimensional model. Int. J. Tomography & Statistics 5 (2007) 73–78. [Google Scholar]
  5. I. Aksikas, J. Winkin and D. Dochain, Optimal LQ-feedback regulation of a nonisothermal plug flow reactor model by spectral factorization. IEEE Trans. Automat. Control 52 (2007) 1179–1193. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Aksikas, J. Winkin and D. Dochain, Asymptotic stability of infinite-dimensional semilinear systems: application to a nonisothermal reactor. Systems Control Lett. 56 (2007) 122–132. [CrossRef] [MathSciNet] [Google Scholar]
  7. V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems. Boston: Academic Press (1993). [Google Scholar]
  8. A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press (2000). [Google Scholar]
  9. H. Brezis, Opéateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Mathematics Studies. North-Holland (1973). [Google Scholar]
  10. F.M. Callier and C.A. Desoer, Linear System Theory. Springer-Verlag, New York (1991). [Google Scholar]
  11. F.M. Callier and J. Winkin, LQ-optimal control of infinite-dimensional systems by spectral factorization. Automatica 28 (1992) 757–770. [CrossRef] [MathSciNet] [Google Scholar]
  12. P.D. Christofides, Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Application to Transport-Reaction Processes. Birkhauser, Boston (2001). [Google Scholar]
  13. R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York (1995). [Google Scholar]
  14. C.M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97–106. [CrossRef] [Google Scholar]
  15. D. Dochain, Contribution to the Analysis and Control of Distributed Parameter Systems with Application to (Bio)chemical Processes and Robotics. Thèse d'Agrégation de l'Enseignement Supérieur, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1994). [Google Scholar]
  16. G.F. Froment and K.B. Bischoff, Chemical Reactor Analysis and Design. 2nd edition, John Wiley, New York (1990). [Google Scholar]
  17. M. Ikeda and D.D. Siljak, Optimality and robustness of linear quadratic control for nonlinear systems. Automatica 26 (1990) 499–511. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Laabissi, M.E. Achhab, J. Winkin and D. Dochain, Trajectory analysis of nonisothermal tubular reactor nonlinear models. Systems Control Lett. 42 (2001) 169–184. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces. Pergamon, Oxford (1981). [Google Scholar]
  20. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II: Abstract Hyperbolic-like Systems over a Finite Time Horizon. Cambridge University Press (2000). [Google Scholar]
  21. Z. Luo, B. Guo and O. Morgül, Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer-Verlag, London (1999). [Google Scholar]
  22. R.H. Martin, Nonlinear Operators and Differential Equations in Banach spaces. John Wiley & Sons, New York (1976). [Google Scholar]
  23. A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Appl. Math. Sci. 44. Springer-Verlag, New York (1983). [Google Scholar]
  24. W.H. Ray, Advanced Process Control, Series in Chemical Engineering. Butterworth, Boston (1981). [Google Scholar]
  25. L.M. Silverman and H.E. Meadows, Controllability and observability in time-variable linear systems. J. SIAM Control 5 (1967) 64–73. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.