Free Access
Issue
ESAIM: COCV
Volume 15, Number 1, January-March 2009
Page(s) 214 - 244
DOI https://doi.org/10.1051/cocv:2008027
Published online 23 January 2009
  1. F. Almgren, J.E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993) 387–438. [Google Scholar]
  2. O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interfaces Free Boundaries 7 (2005) 415–434. [CrossRef] [MathSciNet] [Google Scholar]
  3. O. Alvarez, E. Carlini, R. Monneau and E. Rouy, A convergent scheme for a nonlocal Hamilton-Jacobi equation, modeling dislocation dynamics. Num. Math. 104 (2006) 413–572. [CrossRef] [Google Scholar]
  4. O. Alvarez, P. Hoch, Y. Le Bouar and R. Monneau, Dislocation dynamics: short time existence and uniqueness of the solution. Arch. Rational Mech. Anal. 85 (2006) 371–414. [Google Scholar]
  5. L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191–246. [MathSciNet] [Google Scholar]
  6. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  7. G. Barles, P. Cardaliaguet, O. Ley and R. Monneau, Global existence results and uniqueness for dislocation type equations. SIAM J. Math. Anal. (to appear). [Google Scholar]
  8. G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM J. Numer. Anal. 32 (1995) 484–500. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Barles and O. Ley, Nonlocal first-order hamilton-jacobi equations modelling dislocations dynamics. Comm. Partial Differential Equations 31 (2006) 1191–1208. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Barles, H.M. Soner and P.E. Souganidis, Front propagation and phase field theory. SIAM J. Control Optim. 31 (1993) 439–469. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Bombieri, Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 (1982) 99–130. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Cardaliaguet, On front propagation problems with nonlocal terms. Adv. Differential Equations 5 (2000) 213–268. [MathSciNet] [Google Scholar]
  13. P. Cardaliaguet and O. Ley, On the energy of a flow arising in shape optimisation. Interfaces Free Bound. (to appear). [Google Scholar]
  14. P. Cardaliaguet and D. Pasquignon, On the approximation of front propagation problems with nonlocal terms. ESAIM: M2AN 35 (2001) 437–462. [CrossRef] [EDP Sciences] [Google Scholar]
  15. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  16. L.C. Evans and J. Spruck, Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc. 330 (1992) 321–332. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969). [Google Scholar]
  18. N. Forcadel, Dislocations dynamics with a mean curvature term: short time existence and uniqueness. Differential Integral Equations 21 (2008) 285–304. [MathSciNet] [Google Scholar]
  19. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105. Princeton University Press, Princeton, NJ (1983). [Google Scholar]
  20. Y. Giga and S. Goto, Geometric evolution of phase-boundaries, in On the evolution of phase boundaries (Minneapolis, MN, 1990–1991), IMA Vol. Math. Appl. 43, Springer, New York (1992) 51–65. [Google Scholar]
  21. E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics 80. Birkhäuser Verlag, Basel (1984). [Google Scholar]
  22. S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differential Equations 3 (1995) 253–271. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications 16. Birkhäuser Verlag, Basel (1995). [Google Scholar]
  24. Y. Maekawa, On a free boundary problem of viscous incompressible flows. Interfaces Free Bound. 9 (2007) 549–589. [MathSciNet] [Google Scholar]
  25. F. Morgan, Geometric measure theory. A beginner's guide. Academic Press Inc., Boston, MA (1988). [Google Scholar]
  26. R. Schoen, L. Simon and F.J. Almgren, Jr., Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II. Acta Math. 139 (1977) 217–265. [Google Scholar]
  27. L. Simon, Lectures on geometric measure theory, in Proceedings of the Centre for Mathematical Analysis, Vol. 3, Australian National University Centre for Mathematical Analysis, Canberra (1983). [Google Scholar]
  28. P. Soravia and P.E. Souganidis, Phase-field theory for FitzHugh-Nagumo-type systems. SIAM J. Math. Anal. 27 (1996) 1341–1359. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.