Free Access
Issue
ESAIM: COCV
Volume 15, Number 2, April-June 2009
Page(s) 245 - 278
DOI https://doi.org/10.1051/cocv:2008030
Published online 26 April 2008
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125–145. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.M. Ball, A version of the fundamental theorem for Young measures, in PDE's and continuum models of phase transitions (Nice, 1988), Lecture Notes in Physics, Springer-Verlag, Berlin (1989) 207–215. [Google Scholar]
  3. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam-London; American Elsevier, New York (1973). [Google Scholar]
  4. G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165–225. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Dal Maso, A. De Simone, M.G. Mora and M. Morini, Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2 (2007) 1–36. [MathSciNet] [Google Scholar]
  6. G. Dal Maso, A. De Simone, M.G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media (to appear). [Google Scholar]
  7. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energy. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem. Math. Mech. Solids 11 (2006) 423–447. [CrossRef] [MathSciNet] [Google Scholar]
  10. A.N. Kolmogorov, Foundations of the Theory of Probability. Chelsea Publishing Company, 2nd edition, New York (1956). [Google Scholar]
  11. C. Miehe and M. Lambrecht, Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: large-strain theory for standard dissipative solids. Internat. J. Numer. Methods Engrg. 58 (2003) 1–41. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Miehe, J. Schotte and M. Lambrecht, Computational homogenization of materials with microstructures based on incremental variational formulations, in IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains (Stuttgart, 2001), Solid Mech. Appl., Kluwer Acad. Publ., Dordrecht (2003) 87–100. [Google Scholar]
  13. A. Mielke, Evolution of rate-independent systems, in Evolutionary equations, Vol. II, C.M. Dafermos and E. Feireisl Eds., Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam (2005) 461–559. [Google Scholar]
  14. A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16 (2006) 177–209. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal. 162 (2002) 137–177. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Ortiz and E. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Physics Solids 47 (1999) 397–462. [CrossRef] [Google Scholar]
  17. P. Pedregal, Parametrized measures and variational principles. Progress in Nonlinear Differential Equations and their Applications 30. Birkhäuser Verlag, Basel (1997). [Google Scholar]
  18. M. Valadier, Young measures, in Methods of nonconvex analysis (Varenna, 1989), Lecture Notes in Mathematics, Springer-Verlag, Berlin (1990) 152–188. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.