Free Access
Issue
ESAIM: COCV
Volume 15, Number 3, July-September 2009
Page(s) 576 - 598
DOI https://doi.org/10.1051/cocv:2008041
Published online 24 June 2008
  1. L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6 (1992) 105–123. [MathSciNet] [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). [Google Scholar]
  5. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications 13. Birkhäuser Boston Inc., Boston, MA (1994). [Google Scholar]
  6. B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411–430. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press (2002). [Google Scholar]
  8. E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  10. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differential Equations 10 (2000) 49–84. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526–529. [MathSciNet] [Google Scholar]
  13. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. XLII (1989) 577–685. [Google Scholar]
  14. P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986). [Google Scholar]
  15. E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston Inc., Boston, MA (2007). [Google Scholar]
  16. Y. Tonegawa, Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 993–1019. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. Tonegawa, A diffused interface whose chemical potential lies in a Sobolev space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005) 487–510. [MathSciNet] [Google Scholar]
  18. T. Wittman, Lost in the supermarket: decoding blurry barcodes. SIAM News 37 September (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.