Free Access
Volume 16, Number 1, January-March 2010
Page(s) 221 - 246
Published online 19 December 2008
  1. G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv. 69 (1994) 142–154. [CrossRef] [MathSciNet]
  2. P. Bérard, Inégalités isopérimétriques et applications : domaines nodaux des fonctions propres. Exposé XI, Séminaire Goulaouic-Meyer-Schwartz (1982).
  3. L. Bers, Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math. 8 (1955) 473–496. [CrossRef] [MathSciNet]
  4. V. Bonnaillie-Noël and G. Vial, Computations for nodal domains and spectral minimal partitions. (2007).
  5. D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8 (1998) 571–579. [MathSciNet]
  6. D. Bucur, B. Bourdin and E. Oudet, Numerical study of an optimal partitioning problem related to eigenvalues. (In preparation).
  7. L.A. Caffarelli and F.H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007) 5–18. [CrossRef] [MathSciNet]
  8. M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198 (2003) 160–196. [CrossRef] [MathSciNet]
  9. M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54 (2005) 779–815. [CrossRef] [MathSciNet]
  10. M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula. Calc. Var. 22 (2005) 45–72. [CrossRef] [MathSciNet]
  11. O. Cybulski, V. Babin and R. Hołyst, Minimization of the Renyi entropy production in the space-partitioning process. Phys. Rev. E 71 (2005) 46130. [CrossRef]
  12. B. Helffer, Domaines nodaux et partitions spectrales minimales (d'après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). Séminaire EDP de l'École Polytechnique (Déc. 2006).
  13. B. Helffer, On nodal domains and minimal spectral partitions. Conference in Montreal (April 2008).
  14. B. Helffer and T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains. Mosc. Math. J. 7 (2007) 67–84. [MathSciNet]
  15. B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions for the disk and the annulus. Provisory notes in February 2007.
  16. B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004.
  17. D. Jakobson, M. Levitin, N. Nadirashvili and I. Polterovic, Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond. J. Comput. Appl. Math. 194 (2006) 141–155. [CrossRef] [MathSciNet]
  18. N. Landais, Problèmes de régularité en optimisation de forme. Ph.D. Thesis, ENS Cachan Bretagne, France (2007).
  19. M. Levitin, L. Parnovski and I. Polterovich, Isospectral domains with mixed boundary conditions. J. Phys. A 39 (2006) 2073–2082. [CrossRef] [MathSciNet]
  20. D. Martin, The finite element library Mélina. (2006).
  21. A. Melas, On the nodal line of the second eigenfunction of the Laplacian on Formula . J. Differential Geom. 35 (1992) 255–263. [MathSciNet]
  22. A. Pleijel, Remarks on Courant's nodal theorem. Comm. Pure. Appl. Math 9 (1956) 543–550. [CrossRef] [MathSciNet]
  23. G. Pólya, On the eigenvalues of vibrating membranes. Proc. London Mah. Soc. 3 (1961) 419–433.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.