Free Access
Volume 16, Number 1, January-March 2010
Page(s) 221 - 246
Published online 19 December 2008
  1. G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv. 69 (1994) 142–154. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Bérard, Inégalités isopérimétriques et applications : domaines nodaux des fonctions propres. Exposé XI, Séminaire Goulaouic-Meyer-Schwartz (1982). [Google Scholar]
  3. L. Bers, Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math. 8 (1955) 473–496. [Google Scholar]
  4. V. Bonnaillie-Noël and G. Vial, Computations for nodal domains and spectral minimal partitions. (2007). [Google Scholar]
  5. D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8 (1998) 571–579. [MathSciNet] [Google Scholar]
  6. D. Bucur, B. Bourdin and E. Oudet, Numerical study of an optimal partitioning problem related to eigenvalues. (In preparation). [Google Scholar]
  7. L.A. Caffarelli and F.H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007) 5–18. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198 (2003) 160–196. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54 (2005) 779–815. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula. Calc. Var. 22 (2005) 45–72. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Cybulski, V. Babin and R. Hołyst, Minimization of the Renyi entropy production in the space-partitioning process. Phys. Rev. E 71 (2005) 46130. [CrossRef] [Google Scholar]
  12. B. Helffer, Domaines nodaux et partitions spectrales minimales (d'après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). Séminaire EDP de l'École Polytechnique (Déc. 2006). [Google Scholar]
  13. B. Helffer, On nodal domains and minimal spectral partitions. Conference in Montreal (April 2008). [Google Scholar]
  14. B. Helffer and T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains. Mosc. Math. J. 7 (2007) 67–84. [MathSciNet] [Google Scholar]
  15. B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions for the disk and the annulus. Provisory notes in February 2007. [Google Scholar]
  16. B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004. [Google Scholar]
  17. D. Jakobson, M. Levitin, N. Nadirashvili and I. Polterovic, Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond. J. Comput. Appl. Math. 194 (2006) 141–155. [Google Scholar]
  18. N. Landais, Problèmes de régularité en optimisation de forme. Ph.D. Thesis, ENS Cachan Bretagne, France (2007). [Google Scholar]
  19. M. Levitin, L. Parnovski and I. Polterovich, Isospectral domains with mixed boundary conditions. J. Phys. A 39 (2006) 2073–2082. [Google Scholar]
  20. D. Martin, The finite element library Mélina. (2006). [Google Scholar]
  21. A. Melas, On the nodal line of the second eigenfunction of the Laplacian on Formula . J. Differential Geom. 35 (1992) 255–263. [MathSciNet] [Google Scholar]
  22. A. Pleijel, Remarks on Courant's nodal theorem. Comm. Pure. Appl. Math 9 (1956) 543–550. [Google Scholar]
  23. G. Pólya, On the eigenvalues of vibrating membranes. Proc. London Mah. Soc. 3 (1961) 419–433. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.