Free Access
Volume 16, Number 2, April-June 2010
Page(s) 275 - 297
Published online 19 December 2008
  1. A. Agrachev, Methods of control theory in nonholonomic geometry, in Proc. ICM-94, Birkhauser, Zürich (1995) 1473–1483. [Google Scholar]
  2. A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321–358. [Google Scholar]
  3. A. Agrachev, Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 1–12. [Google Scholar]
  4. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopedia of Mathematical Sciences 87. Springer (2004). [Google Scholar]
  5. A. Bellaiche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 1–78. [Google Scholar]
  6. B. Bonnard and M. Chyba, Singular trajectories and their role in control theory. Springer-Verlag, Berlin (2003). [Google Scholar]
  7. U. Boscain and B. Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds, SMAI 43. Springer (2004). [Google Scholar]
  8. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and lens spaces. SIAM J. Contr. Opt. 47 (2008) 1851–1878. [Google Scholar]
  9. U. Boscain, T. Chambrion and J.P. Gauthier, On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Contr. Syst. 8 (2002) 547–572. [Google Scholar]
  10. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, Appl. Math. Series 2. American Institute of Mathematical Sciences (2007). [Google Scholar]
  11. R.W. Brockett, Explicitly solvable control problems with nonholonomic constraints, in Proceedings of the 38th IEEE Conference on Decision and Control 1 (1999) 13–16. [Google Scholar]
  12. Y. Chitour and M. Sigalotti, Dubins' problem on surfaces. I. Nonnegative curvature J. Geom. Anal. 15 (2005) 565–587. [Google Scholar]
  13. Y. Chitour, F. Jean and E. Trélat, Genericity results for singular curves. J. Differential Geometry 73 (2006) 45–73. [Google Scholar]
  14. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307–326. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 79–323. [Google Scholar]
  16. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). [Google Scholar]
  17. V. Jurdjevic, Optimal Control, Geometry and Mechanics, in Mathematical Control Theory, J. Bailleu and J.C. Willems Eds., Springer, New York (1999) 227–267. [Google Scholar]
  18. V. Jurdjevic, Hamiltonian Point of View on non-Euclidean Geometry and Elliptic Functions. System Control Lett. 43 (2001) 25–41. [CrossRef] [Google Scholar]
  19. J. Petitot, Vers une Neuro-géométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in Mathématiques, Informatique et Sciences Humaines 145, Special issue, EHESS, Paris (1999) 5–101. [Google Scholar]
  20. L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc. (1961). [Google Scholar]
  21. J.A. Reeds and L.A. Shepp, Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145 (1990) 367–393. [MathSciNet] [Google Scholar]
  22. D. Rolfsen, Knots and links. Publish or Perish, Houston (1990). [Google Scholar]
  23. Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Contr. Syst. 14 (2008) 169–234. [Google Scholar]
  24. M. Spivak, A comprehensive introduction to differential geometry. Second edition, Publish or Perish, Inc., Wilmington, Del. (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.