Free Access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 503 - 522
DOI https://doi.org/10.1051/cocv/2009016
Published online 02 July 2009
  1. J.-J. Alibert and J.-P. Raymond, Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 3/4 (1997) 235–250. [Google Scholar]
  2. E. Casas, Control of an elliptic problem with pointwise state contraints. SIAM J. Contr. Opt. 4 (1986) 1309–1322. [Google Scholar]
  3. P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics 35. Springer-Verlag, Berlin (2004). [Google Scholar]
  4. M. Hintermüller, Mesh-independence and fast local convergence of a primal-dual activ e–set method for mixed control-state constrained elliptic control problems. ANZIAM Journal 49 (2007) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003) 865–888. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006) 1198–1221. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17 (2006) 159–187. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Hintermüller, F. Tröltzsch and I. Yousept, Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numer. Math. 108 (2008) 571–603. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Hinze and C. Meyer, Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Computat. Optim. Appl. (2009), doi: 10.1007/s10589-008-9198-1. [Google Scholar]
  10. C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comp. Optim. Appl. 33 (2006) 209–228. [Google Scholar]
  11. C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for stat e–constrained elliptic control problems. Optim. Method. Softw. 22 (2007) 871–899. [Google Scholar]
  12. F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15 (2004/2005) 616–634 (electronic). [Google Scholar]
  13. F. Tröltzsch and I. Yousept, A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints. Comp. Optim. Control 42 (2009) 43–63. [Google Scholar]
  14. I. Yousept, Vergleich von Lösungsverfahren zur Behandlung elliptischer Optimalsteuerungsprobleme. Master's thesis, TU-Berlin, Germany (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.