Free Access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 677 - 694
DOI https://doi.org/10.1051/cocv/2009017
Published online 02 July 2009
  1. A. Agrachev and A. Sarychev, Navier–Stokes equations controllability by means of low modes forcing. J. Math. Fluid Mech. 7 (2005) 108–152. [CrossRef] [MathSciNet]
  2. A. Agrachev and A. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing. Comm. Math. Phys. 265 (2006) 673–697. [CrossRef] [MathSciNet]
  3. J.T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94 (1984) 61–66. [CrossRef] [MathSciNet]
  4. P. Constantin and C. Foias, Navier–Stokes Equations. University of Chicago Press, Chicago, USA (1988).
  5. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [MathSciNet]
  6. D.E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, Cambridge, UK (1996).
  7. E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.P. Puel, Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet]
  8. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier–Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 93–146. [CrossRef] [MathSciNet]
  9. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences]
  10. G. Lorentz, Approximation of Functions. Chelsea Publishing Co., New York, USA (1986).
  11. S.S. Rodrigues, Navier–Stokes equation on the rectangle: controllability by means of low mode forcing. J. Dyn. Control Syst. 12 (2006) 517–562. [CrossRef] [MathSciNet]
  12. A. Shirikyan, Approximate controllability of three-dimensional Navier–Stokes equations. Comm. Math. Phys. 266 (2006) 123–151. [CrossRef] [MathSciNet]
  13. A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 24 (2007) 521–537.
  14. A. Shirikyan, Euler equations are not exactly controllable by a finite-dimensional external force. Physica D 237 (2008) 1317–1323. [CrossRef] [MathSciNet]
  15. M.E. Taylor, Partial Differential Equations, III. Springer-Verlag, New York (1996).
  16. R. Temam, Local existence of Formula solution of the Euler equation of incompressible perfect fluids. Lect. Notes Math. 565 (1976) 184–194. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.