Free Access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 1094 - 1109
DOI https://doi.org/10.1051/cocv/2009039
Published online 09 October 2009
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York, USA (2000). [Google Scholar]
  2. E.J. Anderson and P. Nash, Linear Programming in Infinite Dimensional Spaces. Wiley (1987). [Google Scholar]
  3. V. Bangert, Minimal measures and minimizing closed normal one-currents. GAFA Geom. Funct. Anal. 9 (1999) 413–427. [CrossRef] [Google Scholar]
  4. P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory. J. Eur. Math. Soc. (JEMS) 9 (2007) 85–121. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Contreras and R. Iturriaga, Global Minimizers of Autonomous Lagrangians. Coloquio Brasileiro de Matematica. IMPA, Rio de Janeiro, Brazil (1999). [Google Scholar]
  6. L. De Pascale, M.S. Gelli and L. Granieri, Minimal measures, one-dimensional currents and the Monge-Kantorovich problem. Calc. Var. 27 (2006) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  7. L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, in Current Developments in Mathematics, 1997, S.T. Yau Ed., International Press (1998). [Google Scholar]
  8. L.C. Evans, Some new PDE methods for weak KAM theory. Calc. Var. Partial Differ. Eq. 17 (2003) 159–177. [CrossRef] [Google Scholar]
  9. L.C. Evans and D. Gomes, Linear programming interpretation of Mather's variational principle. ESAIM: COCV 8 (2002) 693–702. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics 88. Cambridge University Press, Cambridge, UK (2008). [Google Scholar]
  11. A. Fathi and A. Siconolfi, Existence of Formula critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004) 363–388. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Gomes and A.M. Oberman, Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43 (2004) 792–812. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Granieri, Mass Transportation Problems and Minimal Measures. Ph.D. Thesis in Mathematics, Pisa, Italy (2005). [Google Scholar]
  14. L. Granieri, On action minimizing measures for the Monge-Kantorovich problem. NoDEA 14 (2007) 125–152. [CrossRef] [Google Scholar]
  15. J. Jost, Riemannian Geometry and Geometric Analysis. Springer (2002). [Google Scholar]
  16. J. Jost and X. Li-Jost, Calculus of Variations, Cambridge Studies in Advanced Mathematics 64. Cambridge University Press, Cambridge, UK (1998). [Google Scholar]
  17. R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996) 273–310. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.N. Mather, Minimal measures. Comment. Math. Helv. 64 (1989) 375–394. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169–207. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Rorro, An approximation scheme for the effective Hamiltonian and applications. Appl. Numer. Math. 56 (2006) 1238–1254. [CrossRef] [MathSciNet] [Google Scholar]
  21. S.M. Sinha, Mathematical Programming. Elsevier (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.