Free Access
Issue
ESAIM: COCV
Volume 17, Number 2, April-June 2011
Page(s) 575 - 601
DOI https://doi.org/10.1051/cocv/2010019
Published online 10 May 2010
  1. A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 752–728.
  2. G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41 (2004) 439–505. [CrossRef] [MathSciNet]
  3. H. Berestycki, L. Nirenberg and S.R.S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domain. Comm. Pure Appl. Math. 47 (1994) 47–92. [CrossRef] [MathSciNet]
  4. I. Birindelli and F. Demengel, Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators. Comm. Pure Appl. Anal. 6 (2007) 335–366. [CrossRef] [MathSciNet]
  5. J. Busca, M.J. Esteban, A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci's operators. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 187–206. [CrossRef] [MathSciNet]
  6. M.C. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. [CrossRef] [MathSciNet]
  7. L.C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137. American Mathematical Society (1999).
  8. J. Garcia-Azorero, J.J. Manfredi, I. Peral and J.D. Rossi, Steklov eigenvalues for the ∞-Laplacian. Rend. Lincei Mat. Appl. 17 (2006) 199–210.
  9. H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Diff. Equ. 83 (1990) 26–78. [CrossRef] [MathSciNet]
  10. H. Ishii and Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators. Preprint.
  11. P. Juutinen, Principal eigenvalue of a very badly degenerate operator and applications. J. Diff. Equ. 236 (2007) 532–550. [CrossRef]
  12. P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian. Math. Ann. 335 (2006) 819–851. [CrossRef] [MathSciNet]
  13. P. Juutinen, P. Lindqvist and J.J. Manfredi, The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148 (1999) 89–105. [CrossRef] [MathSciNet]
  14. P. Lindqvist, On a nonlinear eigenvalue problem. Report 68, Univ. Jyväskylä, Jyväskylä (1995) 33–54.
  15. P.L. Lions, Bifurcation and optimal stochastic control. Nonlinear Anal. 7 (1983) 177–207. [CrossRef] [MathSciNet]
  16. S. Patrizi, The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl. 90 (2008) 286–311. [CrossRef] [MathSciNet]
  17. S. Patrizi, Principal eigenvalues for Isaacs operators with Neumann boundary conditions. NoDEA 16 (2009) 79–107. [CrossRef] [MathSciNet]
  18. Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22 (2009) 167–210. [CrossRef] [MathSciNet]
  19. A. Quaas, Existence of positive solutions to a “semilinear” equation involving the Pucci's operators in a convex domain. Diff. Integral Equations 17 (2004) 481–494.
  20. A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear operators. Adv. Math. 218 (2008) 105–135. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.