Free Access

This article has an erratum: []

Volume 17, Number 2, April-June 2011
Page(s) 380 - 405
Published online 24 March 2010
  1. AHA/ACC/SNM, Standardization of cardiac tomographic imaging. Circulation 86 (1992) 338–339. [PubMed] [Google Scholar]
  2. L. Axel, A. Montillo and D. Kim, Tagged magnetic resonance imaging of the heart: a survey. Med. Image Anal. 9 (2005) 376. [CrossRef] [PubMed] [Google Scholar]
  3. K.J. Bathe, Finite Element Procedures. Prentice-Hall, USA (1996). [Google Scholar]
  4. J. Blum, F.X. Le Dimet and I.M. Navon, Data assimilation for geophysical fluids, in Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans, R. Temam and J. Tribbia Eds., Elsevier (2008). [Google Scholar]
  5. M.A. Cane, A. Kaplan, R.N. Miller, B. Tang, E.C. Hackert and A.J. Busalacchi, Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res. 101 (1996) 22599–22618. [CrossRef] [Google Scholar]
  6. S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements. Inv. Prob. 15 (1999) 1425–1438. [Google Scholar]
  7. D. Chapelle, P. Moireau and P. Le Tallec, Robust filtering for joint state-parameter estimation in distributed mechanical systems. DCDS–A 23 (2009) 65–84. [Google Scholar]
  8. S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009) 20–48. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Hoteit, D.-T. Pham and J. Blum, A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J. Mar. Syst. 36 (2002) 101–127. [CrossRef] [Google Scholar]
  10. S.J. Julier and J.K. Uhlmann, Reduced Sigma Point Filters for the Propagation of Means and Covariances through Nonlinear Transformations, in Proc. of IEEE Am. Contr. Conf., Anchorage AK, USA, 8–10 May (2002) 887–892. [Google Scholar]
  11. S.J. Julier and J.K. Uhlmann, The Scaled Unscented Transformation, in Proc. of IEEE Am. Contr. Conf., Anchorage AK, USA, 8–10 May (2002) 4555–4559. [Google Scholar]
  12. S. Julier, J. Uhlmann and H. Durrant-Whyte, A new approach for filtering nonlinear systems, in American Control Conference (1995) 1628–1632. [Google Scholar]
  13. S. Julier, J. Uhlmann and H. Durrant-Whyte, A new method for the nonlinear transformation of means and covariances in filter and estimators. IEEE Trans. Automat. Contr. 45 (2000) 447–482. [Google Scholar]
  14. P. Le Tallec, Numerical methods for nonlinear three-dimensional elasticity, in Handbook of Numerical Analysis 3, P.G. Ciarlet and J.-L. Lions Eds., Elsevier (1994). [Google Scholar]
  15. T. Lefebvre, H. Bruyninckx and J. De Schuller, Comments on “A new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors' reply]. IEEE Trans. Automat. Contr. 47 (2002) 1406– 1409. [CrossRef] [Google Scholar]
  16. D.G. Luenberger, An introduction to observers. IEEE Trans. Automat. Contr. 16 (1971) 596–602. [CrossRef] [Google Scholar]
  17. P. Moireau, D. Chapelle and P. Le Tallec, Joint state and parameter estimation for distributed mechanical systems. Comput. Meth. Appl. Mech. Eng. 197 (2008) 659–677. [Google Scholar]
  18. P. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inv. Prob. 25 (2009) 035010. [Google Scholar]
  19. D.-T. Pham, J. Verron and L. Gourdeau, Filtres de Kalman singuliers évolutifs pour l'assimilation de données en océanographie. C. R. Acad. Sci. – Ser. IIA 326 (1998) 255–260. [Google Scholar]
  20. D.T. Pham, J. Verron and M.C. Roubeaud, A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Marine Systems 16 (1998) 323–341. [CrossRef] [Google Scholar]
  21. S. Sarkka, On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Automat. Contr. 52 (2007) 1631–1641. [CrossRef] [Google Scholar]
  22. D. Simon, Optimal State Estimation: Kalman, H, and Nonlinear Approaches. Wiley-Interscience (2006). [Google Scholar]
  23. M. Wu and A.W. Smyth, Application of the unscented Kalman filter for real-time nonlinear structural system identification. Struct. Contr. Health. Monit. 14 (2006) 971–990. [CrossRef] [Google Scholar]
  24. Q. Zhang and A. Clavel, Adaptive observer with exponential forgetting factor for linear time varying systems, in Proceedings of the 40th IEEE Conference on Decision and Control 4 (2001) 3886–3891. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.