Free Access
Volume 17, Number 2, April-June 2011
Page(s) 293 - 321
Published online 24 March 2010
  1. A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst. 2 (1996) 321–358. [CrossRef]
  2. A.A. Agrachev, U. Boscain, J.P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621–2655. [CrossRef] [MathSciNet]
  3. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2), and lens spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [CrossRef] [MathSciNet]
  4. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307–326. [CrossRef] [MathSciNet]
  5. El-H.Ch. El-Alaoui, J.-P. Gauthier and I. Kupka, Small sub-Riemannian balls on R3. J. Dyn. Control Syst. 2 (1996) 359–421. [CrossRef]
  6. J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture Notes in Control and Information Sciences 229. Springer (1998).
  7. I. Moiseev and Yu. L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009) DOI: 10.1051/cocv/2009004. [CrossRef] [EDP Sciences]
  8. J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris 97 (2003) 265–309. [CrossRef] [PubMed]
  9. J. Petitot, Neurogéometrie de la vision – Modèles mathématiques et physiques des architectures fonctionnelles. Éditions de l'École Polytechnique, France (2008).
  10. Yu.L. Sachkov, Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009) DOI: 10.1051/cocv/2009031. [CrossRef] [EDP Sciences]
  11. A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems. Geometry of distributions and variational problems, in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5–85 [in Russian]. [English translation in Encyclopedia of Math. Sci. 16, Dynamical Systems 7, Springer Verlag.]
  12. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge, UK (1996).
  13. S. Wolfram, Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, USA (1991).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.