Free Access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 955 - 974
DOI https://doi.org/10.1051/cocv/2010033
Published online 18 August 2010
  1. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976). [Google Scholar]
  2. E. Bonetti and G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (2008) 1187–1208. [CrossRef] [Google Scholar]
  3. E. Bonetti and M. Frémond, Collisions and fracture, a 1-D example: How to tear off a chandelier from the ceiling. J. Elast. 74 (2004) 47–66. [CrossRef] [Google Scholar]
  4. E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials. Contin. Mech. Thermodyn. 16 (2004) 319–335. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Bonetti, A. Segatti and G. Schimperna, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Diff. Equ. 218 (2005) 91–116. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion. Indiana Univ. Math. J. 56 (2007) 2787–2819. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci. 31 (2008) 1029–1064. [CrossRef] [Google Scholar]
  8. E. Bonetti, G. Bonfanti and R. Rossi, Thermal effects in adhesive contact: modelling and analysis. Nonlinearity 22 (2009) 2697–2731. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. P. Colli, F. Luterotti, G. Schimperna and U. Stefanelli, Global existence for a class of generalized systems for irreversible phase changes. NoDEA Nonlinear Diff. Equ. Appl. 9 (2002) 255–276. [CrossRef] [Google Scholar]
  10. F. Freddi and M. Frémond, Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct. 7 (2006) 1205–1233. [CrossRef] [Google Scholar]
  11. M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris 295 (1982) 913–916. [Google Scholar]
  12. M. Frémond, Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383–407. [Google Scholar]
  13. M. Frémond, Non-smooth Thermomechanics. Springer-Verlag, Berlin (2002). [Google Scholar]
  14. M. Frémond, Collisions. Edizioni del Dipartimento di Ingegneria Civile dell' Università di Roma Tor Vergata, Italy (2007). [Google Scholar]
  15. M. Frémond and N. Kenmochi, Damage problems for viscous locking materials. Adv. Math. Sci. Appl. 16 (2006) 697–716. [MathSciNet] [Google Scholar]
  16. M. Frémond and B. Nedjar, Damage, gradient of damage and priciple of virtual power. Int. J. Solids Struct. 33 (1996) 1083–1103. [CrossRef] [Google Scholar]
  17. M. Frémond, K. Kuttler and M. Shillor, Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl. 229 (1999) 271–294. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969). [Google Scholar]
  19. J.J. Moreau, Sur les lois de frottement, de viscosité et plasticité. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 271 (1970) 608–611. [Google Scholar]
  20. N. Point, Unilateral contact with adherence. Math. Meth. Appl. Sci. 10 (1998) 367–381. [CrossRef] [Google Scholar]
  21. J. Simon, Compact sets in the space Lp(0,T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.