Free Access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 909 - 930
DOI https://doi.org/10.1051/cocv/2010029
Published online 06 August 2010
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000). [Google Scholar]
  2. G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293–318. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Aubert, J. Aujol and L. Blanc-Feraud, Detecting codimension – Two objects in an image with Ginzburg-Landau models. Int. J. Comput. Vis. 65 (2005) 29–42. [CrossRef] [Google Scholar]
  4. G. Bellettini, Variational approximation of functionals with curvatures and related properties. J. Conv. Anal. 4 (1997) 91–108. [Google Scholar]
  5. G. Bellettini and M. Paolini, Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna (1993). [Google Scholar]
  6. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkäuser, Boston (1994). [Google Scholar]
  7. A. Braides, Γ-convergence for beginners. Oxford University Press, New York (2000). [Google Scholar]
  8. A. Braides and A. Malchiodi, Curvature theory of boundary phases: the two dimensional case. Interfaces Free Bound. 4 (2002) 345–370. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Braides and R. March, Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 59 (2006) 71–121. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensionals bounded open sets. Comm. Partial Diff. Eq. 22 (1997) 811–840. [CrossRef] [Google Scholar]
  11. G.Q. Chen and H. Fried, Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal. 147 (1999) 35–51. [Google Scholar]
  12. G.Q. Chen and H. Fried, On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Math. 32 (2001) 1–33. [CrossRef] [Google Scholar]
  13. G. Dal Maso, Introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  14. G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741–808. [Google Scholar]
  15. E. De Giorgi, Some remarks on Γ-convergence and least square methods, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Birkhäuser, Boston (1991) 135–142. [Google Scholar]
  16. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 58 (1975) 842–850. [Google Scholar]
  17. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63–101. [Google Scholar]
  18. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992). [Google Scholar]
  19. D. Graziani, L. Blanc-Feraud and G. Aubert, A formal Γ-convergence approach for the detection of points in 2-D images. SIAM J. Imaging Sci. (to appear). [Google Scholar]
  20. J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993). [Google Scholar]
  21. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
  22. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. 14-B (1977) 285–299. [Google Scholar]
  23. M. Röger and R. Shätzle, On a modified conjecture of De Giorgi. Math. Zeitschrift 254 (2006) 675–714. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 180–258. [Google Scholar]
  25. W. Ziemer, Weakly Differentiable Functions. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.