Free Access
Volume 17, Number 4, October-December 2011
Page(s) 909 - 930
Published online 06 August 2010
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000).
  2. G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293–318. [CrossRef] [MathSciNet]
  3. G. Aubert, J. Aujol and L. Blanc-Feraud, Detecting codimension – Two objects in an image with Ginzburg-Landau models. Int. J. Comput. Vis. 65 (2005) 29–42. [CrossRef]
  4. G. Bellettini, Variational approximation of functionals with curvatures and related properties. J. Conv. Anal. 4 (1997) 91–108.
  5. G. Bellettini and M. Paolini, Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna (1993).
  6. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkäuser, Boston (1994).
  7. A. Braides, Γ-convergence for beginners. Oxford University Press, New York (2000).
  8. A. Braides and A. Malchiodi, Curvature theory of boundary phases: the two dimensional case. Interfaces Free Bound. 4 (2002) 345–370. [CrossRef] [MathSciNet]
  9. A. Braides and R. March, Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 59 (2006) 71–121. [CrossRef] [MathSciNet]
  10. A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensionals bounded open sets. Comm. Partial Diff. Eq. 22 (1997) 811–840. [CrossRef]
  11. G.Q. Chen and H. Fried, Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal. 147 (1999) 35–51.
  12. G.Q. Chen and H. Fried, On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Math. 32 (2001) 1–33. [CrossRef]
  13. G. Dal Maso, Introduction to Γ-convergence. Birkhäuser, Boston (1993).
  14. G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741–808.
  15. E. De Giorgi, Some remarks on Γ-convergence and least square methods, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Birkhäuser, Boston (1991) 135–142.
  16. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 58 (1975) 842–850.
  17. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63–101.
  18. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992).
  19. D. Graziani, L. Blanc-Feraud and G. Aubert, A formal Γ-convergence approach for the detection of points in 2-D images. SIAM J. Imaging Sci. (to appear).
  20. J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993).
  21. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet]
  22. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. 14-B (1977) 285–299.
  23. M. Röger and R. Shätzle, On a modified conjecture of De Giorgi. Math. Zeitschrift 254 (2006) 675–714. [CrossRef] [MathSciNet]
  24. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 180–258.
  25. W. Ziemer, Weakly Differentiable Functions. Springer-Verlag, New York (1989).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.