Free Access
Volume 17, Number 4, October-December 2011
Page(s) 1133 - 1143
Published online 28 October 2010
  1. H. Brezis, Analyse fonctionnelle : théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master's Degree], Masson, Paris (1983). [Google Scholar]
  2. H. Brezis and M. Sibony, Équivalence de deux inéquations variationnelles et applications. Arch. Rational Mech. Anal. 41 (1971) 254–265. [MathSciNet] [Google Scholar]
  3. A. Cellina, On the bounded slope condition and the validity of the Euler Lagrange equation. SIAM J. Control Optim. 40 (2002) 1270–1279. [CrossRef] [Google Scholar]
  4. A. Cellina, Comparison results and estimates on the gradient without strict convexity. SIAM J. Control Optim. 46 (2007) 738–749. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Clarke, Continuity of solutions to a basic problem in the calculus of variations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005) 511–530. [MathSciNet] [Google Scholar]
  6. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1992). [Google Scholar]
  7. M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] 2. Edizioni della Normale, Pisa (2005). [Google Scholar]
  8. P. Hartman, On the bounded slope condition. Pacific J. Math. 18 (1966) 495–511. [MathSciNet] [Google Scholar]
  9. P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966) 271–310. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Mariconda and G. Treu, Lipschitz regularity for minima without strict convexity of the Lagrangian. J. Differ. Equ. 243 (2007) 388–413. [CrossRef] [Google Scholar]
  11. C. Mariconda and G. Treu, Local Lipschitz regularity of minima for a scalar problem of the calculus of variations. Commun. Contemp. Math. 10 (2008) 1129–1149. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Mariconda and G. Treu, Hölder regularity for a classical problem of the calculus of variations. Adv. Calc. Var. 2 (2009) 311–320. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Miranda, Un teorema di esistenza e unicità per il problema dell'area minima in n variabili. Ann. Scuola Norm. Sup. Pisa 19 (1965) 233–249. [MathSciNet] [Google Scholar]
  14. G. Treu and M. Vornicescu, On the equivalence of two variational problems. Calc. Var. Partial Differential Equations 11 (2000) 307–319. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.