Free Access
Volume 17, Number 4, October-December 2011
Page(s) 1088 - 1100
DOI https://doi.org/10.1051/cocv/2010035
Published online 23 August 2010
  1. H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43 (1971) 272–292. [MathSciNet] [Google Scholar]
  2. H.O. Fattorini and D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quart. Appl. Math. 32 (1974) 45–69. [MathSciNet] [Google Scholar]
  3. A.V. Fursikov and O.Y. Imanuvilov, Controllability of Evolution Equations, Lect. Notes Ser. 34. Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  4. G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Diff. Eq. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  5. G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141 (1998) 297–329. [Google Scholar]
  6. S. Micu and E. Zuazua, On the controllability of a fractional order parabolic equation. SIAM J. Control Optim. 44 (2006) 1950–1972. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Miller, On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Systems 18 (2006) 260–271. [Google Scholar]
  8. L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Preprint, available at http://hal.archives-ouvertes.fr/hal-00411846/en/ (2009). [Google Scholar]
  9. H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics 84. Published for the Conference Board of the Mathematical Sciences, Washington (1994). [Google Scholar]
  10. T.I. Seidman, How violent are fast controls. III. J. Math. Anal. Appl. 339 (2008) 461–468. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel (2009). [Google Scholar]
  12. P. Turán, On a theorem of Littlewood. J. London Math. Soc. 21 (1946) 268–275. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.