Free Access
Volume 18, Number 2, April-June 2012
Page(s) 501 - 519
Published online 22 July 2011
  1. M. Bohner, O. Došlý and W. Kratz, Sturmian and spectral theory for discrete symplectic systems. Trans. Am. Math. Soc. 361 (2009) 3109–3123. [CrossRef]
  2. W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics 220. Springer-Verlag, Berlin, Heidelberg (1971).
  3. O. Došlý and W. Kratz, Oscillation theorems for symplectic difference systems. J. Difference Equ. Appl. 13 (2007) 585–605. [CrossRef] [MathSciNet]
  4. J.V. Elyseeva, The comparative index and the number of focal points for conjoined bases of symplectic difference systems in Discrete Dynamics and Difference Equations, in Proceedings of the Twelfth International Conference on Difference Equations and Applications, Lisbon, 2007, edited by S. Elaydi, H. Oliveira, J.M. Ferreira and J.F. Alves. World Scientific Publishing Co., London (2010) 231–238.
  5. R. Hilscher and V. Zeidan, Riccati equations for abnormal time scale quadratic functionals. J. Differ. Equ. 244 (2008) 1410–1447. [CrossRef]
  6. R. Hilscher and V. Zeidan, Nabla time scale symplectic systems. Differ. Equ. Dyn. Syst. 18 (2010) 163–198. [CrossRef] [MathSciNet]
  7. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin (1995).
  8. W. Kratz, An oscillation theorem for self-adjoint differential systems and the Rayleigh principle for quadratic functionals. J. London Math. Soc. 51 (1995) 401–416. [CrossRef]
  9. W. Kratz, Definiteness of quadratic functionals. Analysis (Munich) 23 (2003) 163–183.
  10. W. Kratz, R. Šimon Hilscher, and V. Zeidan, Eigenvalue and oscillation theorems for time scale symplectic systems. Int. J. Dyn. Syst. Differ. Equ. 3 (2011) 84–131.
  11. W.T. Reid, Ordinary Differential Equations. Wiley, New York (1971).
  12. W.T. Reid, Sturmian Theory for Ordinary Differential Equations. Springer-Verlag, New York-Berlin-Heidelberg (1980).
  13. R. Šimon Hilscher, and V. Zeidan, Picone type identities and definiteness of quadratic functionals on time scales. Appl. Math. Comput. 215 (2009) 2425–2437. [CrossRef] [MathSciNet]
  14. M. Wahrheit, Eigenwertprobleme und Oszillation linearer Hamiltonischer Systeme [Eigenvalue Problems and Oscillation of Linear Hamiltonian Systems]. Ph.D. thesis, University of Ulm, Germany (2006).
  15. M. Wahrheit, Eigenvalue problems and oscillation of linear Hamiltonian systems. Int. J. Difference Equ. 2 (2007) 221–244.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.