Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 969 - 986
DOI https://doi.org/10.1051/cocv/2011198
Published online 16 January 2012
  1. J.P. Aubin and A. Cellina, Differential inclusions. Set-Valued Maps and Viability Theory. Springer-Verlag, Berlin (1984). [Google Scholar]
  2. A. Bressan and K. Han, Optima and equilibria for a model of traffic flow. SIAM J. Math. Anal. 43 (2011) 2384–2417. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Cellina, Approximation of set valued functions and fixed point theorems. Ann. Mat. Pura Appl. 82 (1969) 17–24. [CrossRef] [MathSciNet] [Google Scholar]
  4. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998). [Google Scholar]
  5. T.L. Friesz, Dynamic Optimization and Differential Games, Springer, New York (2010). [Google Scholar]
  6. T.L. Friesz, T. Kim, C. Kwon and M.A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium. Transp. Res. Part B (2010). [Google Scholar]
  7. A. Fügenschuh, M. Herty and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks. SIAM J. Optim. 16 (2006) 1155–1176. [CrossRef] [Google Scholar]
  8. M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models. AIMS Series on Applied Mathematics, Springfield, Mo. (2006). [Google Scholar]
  9. M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks. J. Optim. Theory Appl. 126 (2005) 589–616. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow. Math. Methods Appl. Sci. 30 (2007) 153–169. [CrossRef] [Google Scholar]
  11. L.C. Evans, Partial Differential Equations, 2nd edition. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  12. P.D. Lax, Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10 (1957) 537–566. [Google Scholar]
  13. M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229 (1955) 317–345. [Google Scholar]
  14. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956), 42–51. [Google Scholar]
  15. J. Smoller, Shock waves and reaction-diffusion equations, 2nd edition. Springer-Verlag, New York (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.