Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 969 - 986
DOI https://doi.org/10.1051/cocv/2011198
Published online 16 January 2012
  1. J.P. Aubin and A. Cellina, Differential inclusions. Set-Valued Maps and Viability Theory. Springer-Verlag, Berlin (1984).
  2. A. Bressan and K. Han, Optima and equilibria for a model of traffic flow. SIAM J. Math. Anal. 43 (2011) 2384–2417. [CrossRef] [MathSciNet]
  3. A. Cellina, Approximation of set valued functions and fixed point theorems. Ann. Mat. Pura Appl. 82 (1969) 17–24. [CrossRef] [MathSciNet]
  4. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998).
  5. T.L. Friesz, Dynamic Optimization and Differential Games, Springer, New York (2010).
  6. T.L. Friesz, T. Kim, C. Kwon and M.A. Rigdon, Approximate network loading and dual-time-scale dynamic user equilibrium. Transp. Res. Part B (2010).
  7. A. Fügenschuh, M. Herty and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks. SIAM J. Optim. 16 (2006) 1155–1176. [CrossRef]
  8. M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models. AIMS Series on Applied Mathematics, Springfield, Mo. (2006).
  9. M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks. J. Optim. Theory Appl. 126 (2005) 589–616. [CrossRef] [MathSciNet]
  10. M. Herty, C. Kirchner and A. Klar, Instantaneous control for traffic flow. Math. Methods Appl. Sci. 30 (2007) 153–169. [CrossRef]
  11. L.C. Evans, Partial Differential Equations, 2nd edition. American Mathematical Society, Providence, RI (2010).
  12. P.D. Lax, Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10 (1957) 537–566. [CrossRef]
  13. M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229 (1955) 317–345. [CrossRef] [MathSciNet]
  14. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956), 42–51. [CrossRef] [MathSciNet]
  15. J. Smoller, Shock waves and reaction-diffusion equations, 2nd edition. Springer-Verlag, New York (1994).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.