Free Access
Issue
ESAIM: COCV
Volume 19, Number 2, April-June 2013
Page(s) 358 - 384
DOI https://doi.org/10.1051/cocv/2012012
Published online 10 January 2013
  1. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Proc. R. Soc. London A 272 (1972) 47–78. [Google Scholar]
  2. J.L. Bona, W.G. Pritchard and L.R. Scott, An evaluation of a model equation for water waves. Philos. Trans. Roy. Soc. London Ser. A 302 (1981) 457–510. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.L. Bona, S.M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Amer. Math. Soc. 354 (2002) 427–490. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.L. Bona, S.M. Sun and B.-Y. Zhang, Forced oscillations of a damped korteweg-de Vries equation in a quarter plane. Commun. Partial Differ. Equ. 5 (2003) 369–400. [Google Scholar]
  5. J.L. Bona, S.M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 1391–1436. [CrossRef] [Google Scholar]
  6. J.L. Bona, S.M. Sun and B.-Y. Zhang, Conditional and unconditional well posedness of nonlinear evolution equations. Adv. Differ. Equ. 9 (2004) 241–265. [Google Scholar]
  7. J.L. Bona, S.M. Sun and B.-Y. Zhang, Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications. Dyn. Partial Differ. Equ. 3 (2006) 1–69. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.L. Bona, S.M. Sun and B.-Y. Zhang, Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Henri Poincaré 25 (2008) 1145–1185. [Google Scholar]
  9. J.L. Bona, S.M. Sun and B.-Y. Zhang, Nonhomogeneous problem for the Korteweg-de Vries equation in a bounded domain II. J. Differ. Equ. 247 (2009) 2558–2596. [CrossRef] [Google Scholar]
  10. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I : Shrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II : the KdV-equation. Geom. Funct. Anal. 3 (1993) 209–262. [CrossRef] [MathSciNet] [Google Scholar]
  12. B.A. Bubnov, Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain. Differ. Equ. 15 (1979) 17–21. [Google Scholar]
  13. B.A. Bubnov, Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations. Differ. Equ. 16 (1980) 24–30. [Google Scholar]
  14. E. Cerpa, Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Cerpa and E. Crépeau, Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Henri Poincaré 26 (2009) 457–475. [Google Scholar]
  16. T. Colin and J.-M. Ghidaglia, Un problème aux limites pour l’équation de Korteweg-de Vries sur un intervalle borné (French) [A boundary value problem for the Korteweg-de Vries equation on a bounded interval] Journées équations aux Drives Partielles, Saint-Jean-de-Monts, Exp. No. III, École Polytech., Palaiseau (1997), p. 10. [Google Scholar]
  17. T. Colin and J.-M. Ghidaglia, Un problème mixte pour l’équation de Korteweg-de Vries sur un intervalle borné (French) [A mixed initial-boundary value problem for the Korteweg-de Vries equation on a bounded interval]. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 599–603. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Colin and J.-M. Ghidaglia, An initial-boundary-value problem fo the Korteweg-de Vries equation posed on a finite interval. Adv. Differ. Equ. 6 (2001) 1463–1492. [Google Scholar]
  19. T. Colin and M. Gisclon, An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation. Nonlinear Anal. 46 (2001) 869–892. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.E. Colliander and C. Kenig, The generalized Korteweg-de Vries equation on the half line. Commun. Partial Differ. Equ. 27 (2002) 2187–2266. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with a critical length. J. Eur. Math. Soc. 6 (2004) 367–398. [CrossRef] [MathSciNet] [Google Scholar]
  22. A.V. Faminskii, On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation, International Conference on Differential and Functional Differential Equations (Moscow, 1999). Funct. Differ. Equ. 8 (2001) 183–194. [MathSciNet] [Google Scholar]
  23. A.V. Faminskii, Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation. Differ. Integral Equ. 20 (2007) 601–642. [Google Scholar]
  24. J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time. J. Differ. Equ. 74 (1988) 369–390. [CrossRef] [Google Scholar]
  25. J.-M. Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations. J. Differ. Equ. 110 (1994) 356–359. [CrossRef] [Google Scholar]
  26. J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ. 31 (2006) 1151–1190. [CrossRef] [Google Scholar]
  27. T. Kappeler and P. Topalov, Global well-posedness of KdV in H-1(T,R). Duke Math. J. 135 (2006) 327–360. [CrossRef] [MathSciNet] [Google Scholar]
  28. T. Kato, On the Korteweg-de Vries equation. Manuscr. Math. 28 (1979) 89–99. [CrossRef] [Google Scholar]
  29. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Advances in Mathematics Supplementary Studies, Stud. Appl. Math. 8 (1983) 93–128. [Google Scholar]
  30. C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Amer. Math. Soc. 4 (1991) 323–347. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equations via the contraction principle. Commun. Pure Appl. Math. 46 (1993) 527–620 [CrossRef] [MathSciNet] [Google Scholar]
  32. C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applicatios to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573–603. [CrossRef] [MathSciNet] [Google Scholar]
  33. V. Komornik, D.L. Russell and B.-Y. Zhang, Stabilization de l’equation de Korteweg-de Vries. C. R. Acad. Sci. Paris 312 (1991) 841–843. [Google Scholar]
  34. E.F. Kramer and B.-Y. Zhang, Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain. J. Syst. Sci. Complex 23 (2010) 499–526. [CrossRef] [MathSciNet] [Google Scholar]
  35. L. Monilet, A note on ill-posedness for the KdV equation. Differ. Integral Equ. 24 (2011) 759–765. [Google Scholar]
  36. L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation. Int. Math. Res. Not. (2002) 1979–2005. [Google Scholar]
  37. L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation : the periodic case. arXiv:10054805V1[Math AP] (2010). [Google Scholar]
  38. A.F. Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM : COCV 11 (2005) 473–486. [CrossRef] [EDP Sciences] [Google Scholar]
  39. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). [CrossRef] [Google Scholar]
  40. G. Perla-Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Q. Appl. Math. 60 (2002) 111–129. [Google Scholar]
  41. I. Rivas, M. Usman and B.-Y. Zhang, Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-de Vries equation on a finite domain. Math. Control Rel. Fields 1 (2011) 61–81. [CrossRef] [Google Scholar]
  42. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM : COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences] [Google Scholar]
  43. L. Rosier and B.-Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation. SIAM J. Control Optim. 45 (2006) 927–956. [CrossRef] [MathSciNet] [Google Scholar]
  44. L. Rosier and B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation : recent progresses. J. Syst. Sci. Complex. 22 (2009) 647–682. [CrossRef] [MathSciNet] [Google Scholar]
  45. D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659–676. [CrossRef] [MathSciNet] [Google Scholar]
  46. D.L. Russell and B.-Y. Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl. 190 (1995) 449–488. [CrossRef] [Google Scholar]
  47. L. Tartar, Interpolation non linéaire et régularité. J. Funct. Anal. 9 (1972) 469–489. [CrossRef] [Google Scholar]
  48. B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equations, Proc. of International Conference on Control and Estimation of Distributed Parameter Systems : Nonlinear Phenomena. Vorau, Styria, Austria (1993). International Series of Numer. Math. 118 (1994) 371–389. [Google Scholar]
  49. B.-Y. Zhang, A remark on the Cauchy problem for the Korteweg de-Vries equation on a periodic domain. Differ. Integral Equ. 8 (1995) 1191–1204. [Google Scholar]
  50. B.-Y. Zhang, Analyticity of solutions for the generalized Korteweg de-Vries equation with respect to their initial datum. SIAM J. Math. Anal. 26 (1995) 1488–1513. [CrossRef] [MathSciNet] [Google Scholar]
  51. B.-Y. Zhang, Taylor series expansion for solutions of the Korteweg-de Vries equation with respect to their initial values. J. Func. Anal. 129 (1995) 293–324. [CrossRef] [MathSciNet] [Google Scholar]
  52. B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim. 37 (1999) 543–565. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.