Free Access
Issue
ESAIM: COCV
Volume 19, Number 3, July-September 2013
Page(s) 828 - 843
DOI https://doi.org/10.1051/cocv/2012035
Published online 03 June 2013
  1. F. Baghery and B. Øksendal, A maximum principle for stochastic control with partial information. Stoch. Anal. Appl. 25 (2007) 705–717. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Bahlali and B. Gherbal, Optimality conditions of controlled backward doubly stochastic differential equations. Random Oper. Stoch. Equ. 18 (2010) 247–265. [MathSciNet] [Google Scholar]
  3. A. Bally and A. Matoussi, Weak solutions of stochastic PDEs and backward doubly stochastic differential equations. J. Theoret. Probab. 14 (2001) 125–164. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.S. Baras, R.J. Elliott and M. Kohlmann, The partially-observed stochastic minimum principle. SIAM J. Control Optim. 27 (1989) 1279–1292. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics 9 (1983) 169–222. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM J. Control Optim. 20 (1978) 62–78. [Google Scholar]
  7. Y. Han, S. Peng and Z. Wu, Maximum principle for backward doubly stochastic control systems with applications. SIAM J. Control Optim. 48 (2010) 4224–4241. [CrossRef] [MathSciNet] [Google Scholar]
  8. U.G. Haussmann, The maximum principle for optimal control of diffusions with partial information. SIAM J. Control Optim. 25 (1987) 341–361. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Hu and Y. Ren, Stochastic PDIEs with nonlinear Neumann boundary conditions and generalized backward doubly stochastic differential equations driven by Lévy processes. J. Comput. Appl. Math. 229 (2009) 230–239. [CrossRef] [Google Scholar]
  10. J. Huang, G. Wang and J. Xiong, A maximum principle for partial information backward stochastic control problems with applications. SIAM J. Control Optim. 48 (2009) 2106–2117. [CrossRef] [MathSciNet] [Google Scholar]
  11. H.J. Kushner, Necessary conditions for continuous parameter stochastic optimization problems. SIAM J. Control Optim. 10 (1972) 550–565. [CrossRef] [Google Scholar]
  12. X. Li and S. Tang, General necessary conditions for partially-observed optimal stochastic controls. J. Appl. Probab. 32 (1995) 1118–1137. [CrossRef] [Google Scholar]
  13. Q. Meng, A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information. Sci. China Ser. A 52 (2009) 1579–1588. [CrossRef] [MathSciNet] [Google Scholar]
  14. Q. Meng and M. Tang, Necessary and sufficient conditions for optimal control of stochastic systems associated with Lévy processes. Sci. China Ser. F 52 (2009) 1982–1992. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear parabolic SPDE’s. Probab. Theory Related Fields 98 (1994) 209–227. [Google Scholar]
  16. S. Peng, A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 (1990) 966–979. [Google Scholar]
  17. S. Peng and Y. Shi, A type of time-symmetric forward-backward stochastic differential equations. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 773–778. [CrossRef] [Google Scholar]
  18. L.S. Pontryagin, V.G. Boltyanskti, R.V. Gamkrelidze and E.F. Mischenko, The Mathematical Theory of Optimal Control Processe. Interscience, John Wiley, New York (1962). [Google Scholar]
  19. Y. Ren, A. Lin and L. Hu, Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes. J. Comput. Appl. Math. 223 (2009) 901–907. [CrossRef] [Google Scholar]
  20. Y. Shi, Y. Gu and K. Liu, Comparison theorems of backward doubly stochastic differential equations and applications. Stoch. Anal. Appl. 23 (2005) 97–110. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Shi and Z. Wu, The maximum principle for fully coupled forward backward stochastic control system. Acta Automat. Sinica 32 (2006) 161–169. [MathSciNet] [Google Scholar]
  22. J. Shi and Z. Wu, Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic systems. J. Optim. Theory Appl. 145 (2010) 543–578. [CrossRef] [Google Scholar]
  23. S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36 (1998) 1596–1617. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Wang and Z. Wu, The maximum principle for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control 54 (2009) 1230–1242. [CrossRef] [Google Scholar]
  25. Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems. Syst. Sci. Math. Sci. 11 (1998) 249–259. [Google Scholar]
  26. Z. Wu, A maximum principle for partially observed optimal control of forward-backward stochastic control systems. Sci. China Ser. F 53 (2010) 2205–2214. [CrossRef] [Google Scholar]
  27. W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system. J. Aust. Math. Soc. 37 (1995) 172–185. [CrossRef] [Google Scholar]
  28. L. Zhang and Y. Shi, Maximum principle for forward-backward doubly stochastic control systems and applications. ESAIM: COCV 17 (2011) 1174–1197. [CrossRef] [EDP Sciences] [Google Scholar]
  29. L. Zhang and Y. Shi, Optimal Control of Stochastic Partial Differential Equations (2010) arXiv:1009.6061v2. [Google Scholar]
  30. Q. Zhang and H. Zhao, Pathwise stationary solutions of stochastic partial differential equations and backward doubly stochastic differential equations on infinite horizon. J. Funct. Anal. 252 (2007) 171–219. [CrossRef] [MathSciNet] [Google Scholar]
  31. Q. Zhang and H. Zhao, Stationary solutions of SPDEs and infinite horizon BDSDEs under non-Lipschitz coefficients. J. Differ. Equations 248 (2010) 953–991. [CrossRef] [Google Scholar]
  32. Q. Zhu, T. Wang and Y. Shi, Maximum principle for partially observed optimal control of backward doubly stochastic systems, in Proc. of the 30th Chinese Control Conference (2011) 1383–1388. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.