Free Access
Issue
ESAIM: COCV
Volume 19, Number 3, July-September 2013
Page(s) 906 - 929
DOI https://doi.org/10.1051/cocv/2012038
Published online 03 June 2013
  1. V. Andrieu and L. Praly, On the existence of a Kazantzis–Kravaris/Luenberger observer. SIAM J. Control Optim. 45 (2006) 432–456. [CrossRef] [MathSciNet] [Google Scholar]
  2. V. Andrieu, L. Praly and A. Astolfi, Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47 (2008) 1814–1850. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Besançon and A. Ticlea, An immersion-based observer design for rank-observable nonlinear systems. IEEE Trans. Autom. Control 52 (2007) 83–88. [CrossRef] [Google Scholar]
  4. R.M. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory. SIAM J. Control Optim. 28 (1990) 903–924. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Conte, C.H. Moog and A.M. Perdon, Algrebraic Methods for Nonlinear Control Systems. Springer, London, 2nd (2007). [Google Scholar]
  6. S. Diop and M. Fliess, Nonlinear observability, identifiability and persistent trajectory, in IEEE 30th Conference on Decision and Control (1991) 714–719. [Google Scholar]
  7. M. Fliess, C. Join and H. Sira-Ramirez, Nonlinear estimation is easy. Int. J. Model. Identification Control. 4 (2008) 12–27. [CrossRef] [Google Scholar]
  8. J.P. Gauthier and G. Bornard, Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Autom. Control 26 (1981) 922–926. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control 37 (1992) 875–880. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Glumineau, C.H. Moog and F. Plestan, New algebraic-geometric conditions for the linearization by input-output injection. IEEE Trans. Autom. Control 41 (1996) 598–603. [CrossRef] [Google Scholar]
  11. R.W Goodman, Nilpotent Lie groups: structure and applications to analysis, Lectures Note Math. Springer-Verlag, Berlin, New-York 562 (1976). [Google Scholar]
  12. H. Hermes, Control systems which generate decomposable lie algebras. J. Differ. Equ. 44 (1982) 166–187. [CrossRef] [Google Scholar]
  13. H. Hermes, Nilpotent and high-order approximations of vector-field systems. SIAM Rev. 33 (1991) 238–264. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Advanced Technology 6 (1990) 497–516. [MathSciNet] [Google Scholar]
  15. N. Kazantzis and C. Kravaris, Nonlinear observer design using Lyapunov’s auxiliary theorem. Syst. Control Lett. 34 (1998) 241–247. [CrossRef] [Google Scholar]
  16. H.K. Khalil, High-gain observers in nonlinear feedback control. In International Conference on Control, Automation and system (2008). [Google Scholar]
  17. A.J. Krener and A. Isidori, Linearization by output injection and nonlinear observers. Syst. Control Lett. 3 (1983) 47–52. [CrossRef] [Google Scholar]
  18. A.J. Krener and W. Respondek, Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985) 197–216. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Li and C. Qian, Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans. Autom. Control 51 (2006) 879–884. [CrossRef] [Google Scholar]
  20. T. Menard, E. Moulay and W. Perruquetti, A global high-gain finite-time observer. IEEE Trans. Autom. Control 55 (2010) 1500–1506. [CrossRef] [Google Scholar]
  21. K. Nam, An approximate nonlinear observer with polynomial coordinate transformation maps. IEEE Trans. Autom. Control 42 (1997) 522–527. [CrossRef] [Google Scholar]
  22. A.R. Phelps, On constructing nonlinear observers. SIAM J. Control Optim. 29 (1991) 516–534. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Mathematica 137 (1976) 247–320. [Google Scholar]
  24. I. Souleiman, A. Glumineau and G. Schreier, Direct transformation of nonlinear systems into state affine miso form for observer design. IEEE Trans. Autom. Control 48 (2003) 2191–2196. [CrossRef] [Google Scholar]
  25. G. Stefani, Polynomial approximations to control systems and local controllability, in Proc. of the 24th IEEE Conference on Decision and Control (1985) 33–38. [Google Scholar]
  26. V. Sundarapandian, Local observer design for nonlinear systems. Math. Comput. Model. 35 (2002) 25–36. [CrossRef] [Google Scholar]
  27. H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158–194. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.