Free Access
Issue |
ESAIM: COCV
Volume 19, Number 4, October-December 2013
|
|
---|---|---|
Page(s) | 1225 - 1235 | |
DOI | https://doi.org/10.1051/cocv/2013054 | |
Published online | 06 September 2013 |
- S. Agmon, Lectures on elliptic boundary value problems. Van Nostrand Mathematical Studies, No. 2 D. Van Nostrand Co., Inc. Princeton, N.J., Toronto London (1965). [Google Scholar]
- M.S. Ashbaugh and R.D. Benguria, On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78 (1995) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
- M.S. Ashbaugh and D. Bucur, On the isoperimetric inequality for the buckling of a clamped plate. Z. Angew. Math. Phys. 54 (2003) 756–770. [CrossRef] [MathSciNet] [Google Scholar]
- D. Bucur and G. Buttazzo, Variational methods in some shape optimization problems. Appunti dei Corsi Tenuti da Docenti della Scuola, Notes of Courses Given by Teachers at the School. Scuola Normale Superiore, Pisa (2002). [Google Scholar]
- V. Burenkov and P.D. Lamberti, Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators. Rev. Mat. Comput. 25 (2012) 435–457. [CrossRef] [Google Scholar]
- V. Burenkov and P.D. Lamberti, Spectral stability of higher order uniformly elliptic operators. Sobolev spaces in mathematics. II, in vol. 9 of Int. Math. Ser. (NY). Springer, New York (2009) 69–102. [Google Scholar]
- V. Burenkov, P.D. Lamberti and M. Lanza de Cristoforis, Spectral stability of nonnegative selfadjoint operators. Sovrem. Mat. Fundam. Napravl. 15 (2006) 76–111, in Russian. English transl. in J. Math. Sci. (NY) 149 (2008) 1417–1452. [Google Scholar]
- G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183–195. [Google Scholar]
- R. Dalmasso, Un problème de symétrie pour une équation biharmonique. (French). A problem of symmetry for a biharmonic equation. In vol. 11 of Ann. Fac. Sci. Toulouse Math. (1990) 45–53. [Google Scholar]
- D. Daners, Domain perturbation for linear and semi–linear boundary value problems. Handbook of differential equations: stationary partial differential equations. Handb. Differ. Equ. VI. Elsevier/North-Holland, Amsterdam (2008) 1–81. [Google Scholar]
- F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. Lect. Notes Math. Springer Verlag, Berlin (2010). [Google Scholar]
- P. Grinfeld, Hadamard’s formula inside and out. J. Optim. Theory Appl. 146 (2010) 654–690. [CrossRef] [MathSciNet] [Google Scholar]
- J.K. Hale, Eigenvalues and perturbed domains. Ten mathematical essays on approximation in analysis and topology. Elsevier B.V., Amsterdam (2005) 95–123. [Google Scholar]
- A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). [Google Scholar]
- D. Henry, Perturbation of the boundary in boundary–value problems of partial differential equations. With editorial assistance from Jack Hale and Antonio Luiz Pereira. In vol. 318 of London Math. Soc. Lect. Note Ser. Cambridge University Press, Cambridge (2005). [Google Scholar]
- D. Henry, Topics in Nonlinear Analysis, in vol. 192 of Trabalho de Mathemãtica. Universidade de Brasilia, Departamento de Matemãtica-IE (1982). [Google Scholar]
- B. Kawohl, Some nonconvex shape optimization problems. Optimal shape design (Tróia, 1998). In vol. 746 of Lect. Notes Math. Springer, Berlin (2000) 49–02. [Google Scholar]
- S. Kesavan, Symmetrization and applications. In vol. 3 of Ser. Anal. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). [Google Scholar]
- P.D. Lamberti and M. Lanza de Cristoforis, Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems. J. Math. Soc. Japan 58 (2006) 231–245. [CrossRef] [MathSciNet] [Google Scholar]
- P.D. Lamberti and M. Lanza de Cristoforis, A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal. 5 (2004) 19–42. [Google Scholar]
- P.D. Lamberti and M. Lanza de Cristoforis, An analyticity result for the dependence of multiple eigenvalues and eigenspaces of the Laplace operator upon perturbation of the domain. Glasg. Math. J. 44 (2002) 29–43. [CrossRef] [MathSciNet] [Google Scholar]
- E. Mohr, Über die Rayleighsche Vermutung: unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton. Ann. Mat. Pura Appl. 104 (1975) 85–122. [CrossRef] [MathSciNet] [Google Scholar]
- N.S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Rational Mech. Anal. 129 (1995) 1–10. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation. SIAM J. Control Optim. 39 (2001) 1585–1614. [CrossRef] [MathSciNet] [Google Scholar]
- E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. In vol. 27 of Ann. Math. Studies. Princeton University Press, Princeton, NJ (1951). [Google Scholar]
- G. Szegö, On membranes and plates. Proc. Nat. Acad. Sci. USA 36 (1950) 210–216. [CrossRef] [Google Scholar]
- N.B. Willms, An isoperimetric inequality for the buckling of a clamped plate, Lecture at the Oberwolfach meeting on “Qualitiative properties of PDE” organized, edited by H. Berestycki, B. Kawohl and G. Talenti (1995). [Google Scholar]
- S.A. Wolf and J.B. Keller, Range of the first two eigenvalues of the Laplacian. In vol. 447 of Proc. Roy. Soc. London Ser. A (1994) 397–412. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.