Free Access
Volume 20, Number 1, January-March 2014
Page(s) 269 - 314
Published online 27 January 2014
  1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations: In control and systems theory. Systems & Control: Foundations & Applications. Birkhäuser Verlag, Basel (2003). [Google Scholar]
  2. V.I. Arnol′d, Geometrical methods in the theory of ordinary differential equations. Translated from the Russian by Joseph Szäcs. 2nd edition, vol. 250, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York (1988). [Google Scholar]
  3. V.I. Arnol′d, Ordinary Differential Equations. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest (2003). [Google Scholar]
  4. V. Barbu and G. Wang, Feedback stabilization of periodic solutions to nonlinear parabolic-like evolution systems. Indiana Univ. Math. J. 54 (2005) 1521–1546. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Brockett, A stabilization problem, Open problems in mathematical systems and control theory. Commun. Control Engrg. Ser. Springer, London (1999) 75–78. [Google Scholar]
  6. P. Brunovský, Controllability and linear closed-loop controls in linear periodic systems. J. Differ. Equs. 6 (1969) 296–313. [CrossRef] [Google Scholar]
  7. J.M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, vol. 136 of Amer. Math. Soc. Providence, RI (2007). [Google Scholar]
  8. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques (in French). Ann. Sci. École Norm. Sup. 12 (1883) 47–88. [Google Scholar]
  9. D. Henry, Geometric theory of semilinear parabolic equations, vol. 840 of Lect. Notes Math. Springer-Verlag, Berlin, New York (1981). [Google Scholar]
  10. M.W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, vol. 60 of Pure and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, London (1974). [Google Scholar]
  11. M. Ikeda, H. Maeda and S. Kodama, Stabilization of linear systems. SIAM J. Control 10 (1972) 716–729. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Ikeda, H. Maeda and S. Kodama, Estimation and feedback in linear time-varying systems: a deterministic theory. SIAM J. Control 13 (1975) 304–326. [CrossRef] [MathSciNet] [Google Scholar]
  13. H. Kano and T. Nishimura, Periodic solution of matrix Riccati equations with detectability and stabilizability. Internat. J. Control 29 (1979) 471–487. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Kano and T. Nishimura, Controllability, stabilizability, and matrix Riccati equations for periodic systems. IEEE Trans. Automat. Control 30 (1985) 1129–1131. [CrossRef] [MathSciNet] [Google Scholar]
  15. G.A. Leonov, The Brockett stabilization problem (in Russian). Avtomat. i Telemekh (2001) 190–193; translation in Autom. Remote Control 62 (2001) 847–849. [Google Scholar]
  16. X. Li, J. Yong and Y. Zhou, Control Theory (in Chinese). Higher Education Press of P.R. China, Beijing (2009). [Google Scholar]
  17. A.M. Lyapunov, The general problem of the stability of motion, Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian original and edited by A.T. Fuller. With an introduction and preface by Fuller, a biography of Lyapunov by V.I. Smirnov, and a bibliography of Lyapunov’s works compiled by J.F. Barrett. Lyapunov centenary issue. Reprint of Internat. J. Control 55 (1992) 521–790. [Google Scholar]
  18. I.G. Malkin, The stability theory of motion (in Russian). Nauk Press, Moscow (1966). [Google Scholar]
  19. R. Penrose, A Generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51 (1955) 406–413. [Google Scholar]
  20. E.D. Sontag, Mathematical control theory: Deterministic finite-dimensional systems, 2nd edition, vol. 6 of Texts in Applied Mathematics. Springer-Verlag, New York (1998). [Google Scholar]
  21. W.H. Steeb and Y. Hardy, Matrix calculus and Kronecker product, A practical approach to linear and multilinear algebra, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011). [Google Scholar]
  22. W. Walter, Ordinary differential equations, Translated from the sixth German (1996) edition by Russell Thompson, vol. 182 of Graduate Texts in Mathematics Readings in Mathematics. Springer-Verlag, New York (1998). [Google Scholar]
  23. K. Yosida, Functional analysis, 6th edition, vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, New York (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.