Free Access
Volume 20, Number 3, July-September 2014
Page(s) 725 - 747
Published online 27 May 2014
  1. E. Acerbi, G. Buttazzo and D. Percivale, A variational definition for the strain energy of an elastic string. J. Elasticity 25 (1991) 137–148. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bertram, An alternative approach to finite plasticity based on material isomorphisms. Int. J. Plasticity 15 (1999) 353–374. [CrossRef] [Google Scholar]
  3. C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity. R. Soc. London Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002) 299–317. [Google Scholar]
  4. G. Dal Maso, An introduction to Γ-convergence. Boston, Birkhäuser (1993). [Google Scholar]
  5. G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 257–290. [Google Scholar]
  6. E. Davoli, Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity. Preprint SISSA (2012), Trieste. [Google Scholar]
  7. G.A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. [Google Scholar]
  9. G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Rational Mech. Anal. 180 (2006) 183–236. [Google Scholar]
  10. M. Lecumberry and S. Müller, Stability of slender bodies under compression and validity of the Von Kármán theory. Arch. Ration. Mech. Anal. 193 (2009) 255–310. [CrossRef] [Google Scholar]
  11. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. [Google Scholar]
  12. E.H. Lee, Elastic-plastic deformation at finite strains. J. Appl. Mech. 36 (1969) 1–6. [CrossRef] [Google Scholar]
  13. M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Γ-convergence. Math. Models Methods Appl. Sci. 21 (2011) 1961–1986. [CrossRef] [Google Scholar]
  14. M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via Γ-convergence. NoDEA Nonlinear Differ. Eqs. Appl. 19 (2012) 437–457. [CrossRef] [Google Scholar]
  15. A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19 (2009) 221–248. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Mandel, Equations constitutive et directeur dans les milieux plastiques et viscoplastique. Int. J. Sol. Struct. 9 (1973) 725–740. [CrossRef] [Google Scholar]
  17. A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351–382. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL(d), Geometry, Dynamics, and Mechanics. Springer, New York (2002) 61–90. [Google Scholar]
  19. A. Mielke and U. Stefanelli, Linearized plasticity is the evolutionary Gamma-limit of finite plasticity. J. Eur. Math. Soc. 15 (2013) 923–948. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.M. Naghdi, A critical review of the state of finite plasticity. Z. Angew. Math. Phys. 41 (1990) 315–394. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.