Free Access
Issue
ESAIM: COCV
Volume 20, Number 4, October-December 2014
Page(s) 1224 - 1248
DOI https://doi.org/10.1051/cocv/2014014
Published online 08 August 2014
  1. A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes). http://people.sissa.it/agrachev/agrachev˙files/notes.htm (2012). [Google Scholar]
  2. A. Agrachev, U. Boscain, J.-P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621–2655. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Agrachev and P.W.Y. Lee, Continuity of optimal control costs and its application to weak KAM theory. Calc. Var. Partial Differ. Equ. 39 (2010) 213–232. [CrossRef] [Google Scholar]
  4. A.A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi and M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 793–807. [CrossRef] [Google Scholar]
  5. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Control Theory and Optimization II. Vol. 87 of Encycl. Math. Sci. Springer-Verlag, Berlin (2004). [Google Scholar]
  6. A. Agrachev, U. Boscain and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete Contin. Dyn. Syst. 20 (2008) 801–822. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Barbero-Liñán and M. Sigalotti, High-order sufficient conditions for configuration tracking of affine connection control systems. Syst. Control Lett. 59 (2010) 491–503. [CrossRef] [Google Scholar]
  8. A. Bellaïche, The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry. Vol. 144 of Progr. Math. Birkhäuser, Basel (1996) 1–78. [Google Scholar]
  9. R.M. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory. SIAM J. Control Optim. 28 (1990) 903–924. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.M. Bianchini and G. Stefani. Time-optimal problem and time-optimal map. Rend. Sem. Mat. Univ. Politec. Torino 48 (1992) 401–429 (1990). [Google Scholar]
  11. U. Boscain and P. Mason, Time minimal trajectories for a spin 1 / 2 particle in a magnetic field. J. Math. Phys. 47 (2006) 062101, 29. [CrossRef] [MathSciNet] [Google Scholar]
  12. U. Boscain and G. Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM: COCV 10 (2004) 593–614. [CrossRef] [EDP Sciences] [Google Scholar]
  13. U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin, and H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys. 43 (2002) 2107–2132. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Bullo and A. D. Lewis, Geometric control of mechanical systems. Modeling, analysis, and design for simple mechanical control systems. Vol. 49 of Texts Appl. Math. Springer-Verlag, New York (2005). [Google Scholar]
  15. Y. Chitour, F. Jean and E. Trélat, Singular trajectories of control-affine systems. SIAM J. Control Optim. 47 (2008) 1078–1095. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.-M. Coron, Control and nonlinearity. Vol. 136 of Math. Surv. Monogr. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  17. D. D’Alessandro, Introduction to quantum control and dynamics. Chapman & Hall/CRC Appl. Math. Nonl. Sci. Series. Chapman & Hall/CRC, Boca Raton, FL (2008). [Google Scholar]
  18. D. D’Alessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control 46 (2001) 866–876. [CrossRef] [MathSciNet] [Google Scholar]
  19. L.D. Drager, J.M. Lee, E. Park and K. Richardson, Smooth distributions are finitely generated. Ann. Global Anal. Geom. 41 (2012) 357–369. [CrossRef] [MathSciNet] [Google Scholar]
  20. G.B. Folland and E.M. Stein, Estimates for the Formula complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974) 429–522. [Google Scholar]
  21. H. Frankowska, Value function in optimal control, in Mathematical control theory, Part 1, 2 (Trieste, 2001), vol. 8 of ICTP Lect. Notes. Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 516–653 (electronic). [Google Scholar]
  22. J.-P. Gauthier and V. Zakalyukin, On the codimension one motion planning problem. J. Dyn. Control Syst. 11 (2005) 73–89. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-P. Gauthier and V. Zakalyukin, On the motion planning problem, complexity, entropy, and nonholonomic interpolation. J. Dyn. Control Syst. 12 (2006) 371–404. [CrossRef] [MathSciNet] [Google Scholar]
  24. H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991) 238–264. [CrossRef] [MathSciNet] [Google Scholar]
  25. F. Jean, Complexity of nonholonomic motion planning. Int. J. Control 74 (2001) 776–782. [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Jean, Uniform estimation of sub-Riemannian balls. J. Dynam. Control Systems 7 (2001) 473–500. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Jean, Entropy and complexity of a path in sub-Riemannian geometry. ESAIM: COCV 9 (2003) 485–508. [CrossRef] [EDP Sciences] [Google Scholar]
  28. D. Jerison and A. Sánchez-Calle, Subelliptic, second order differential operators, in Complex analysis, III (College Park, Md., 1985–86). Vol. 1277 of Lect. Notes Math. Springer, Berlin (1987) 46–77. [Google Scholar]
  29. V. Jurdjevic, Geometric control theory. Vol. 52 of Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge (1997). [Google Scholar]
  30. J. Mitchell, On Carnot−Carathéodory metrics. J. Differ. Geom. 21 35–45, 1985. [Google Scholar]
  31. C. Romero-Meléndez, J.P. Gauthier and F. Monroy-Pérez, On complexity and motion planning for co-rank one sub-Riemannian metrics. ESAIM: COCV 10 (2004) 634–655. [CrossRef] [EDP Sciences] [Google Scholar]
  32. L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976) 247–320. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. San Martín, T. Takahashi and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms. Quart. Appl. Math. 65 (2007) 405–424. [Google Scholar]
  34. H.J. Sussmann, Some properties of vector field systems that are not altered by small perturbations. J. Differ. Equ. 20 (1976) 292–315. [Google Scholar]
  35. H.J. Sussmann, Some recent results on the regularity of optimal cost functions, in Proc. of the Berkeley-Ames conference on nonlinear problems in control and fluid dynamics (Berkeley, Calif. (1983)), Lie Groups: Hist., Frontiers and Appl. Ser. B: Systems Inform. Control, II. Math Sci Press. Brookline, MA (1984) 429–434. [Google Scholar]
  36. H.J. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158–194. [CrossRef] [MathSciNet] [Google Scholar]
  37. H.J. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane. SIAM J. Control Optim. 25 (1987) 1145–1162. [Google Scholar]
  38. E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost. J. Dyn. Control Systems 6 (2000) 511–541. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.