Free Access
Issue
ESAIM: COCV
Volume 21, Number 1, January-March 2015
Page(s) 247 - 270
DOI https://doi.org/10.1051/cocv/2014031
Published online 14 January 2015
  1. G. Alberti, R. Choksi and F. Otto, Uniform energy distribution for minimizers of an isoperimetric problem with long-range interactions. J. Amer. Math. Soc. 22 (2009) 569–605. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Alberti and S. Müller, A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54 (2001) 761–825. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013) 515–557. [Google Scholar]
  4. V. Bögelein, F. Duzaar and N. Fusco, A quantitative isoperimetric inequality on the sphere. Preprint (2014). [Google Scholar]
  5. T.L. Chantawansri, A.W. Bosse, A. Hexemer, H.D. Ceniceros, C.J. García-Cervera, E.J. Kramer and G.H. Fredrickson, Self-consistent field theory simulations of block copolymers assembly on a sphere. Phys. Rev. E 75 (2007) 031802. [CrossRef] [Google Scholar]
  6. R. Choksi and M.A. Peletier, Small volume fraction limit of the diblock copolymer problem I: Sharp interface functional. SIAM J. Math. Anal. 42 (2010) 1334–1370. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Choksi and M.A. Peletier, Small volume fraction limit of the diblock copolymer problem II: Diffuse interface functional. SIAM J. Math. Anal. 43 (2011) 739–763. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Choksi and P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem. J. Reine Angew. Math. 611 (2005) 75–108. [Google Scholar]
  9. M. Cicalese and E. Spadaro, Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66 (2013) 1298–1333. [CrossRef] [Google Scholar]
  10. M.P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, New Jersey (1976). [Google Scholar]
  11. T. Einert, Grain Boundary Scars on Spherical Crystals. Langmuir 21 (2005) 12076–12079. [CrossRef] [PubMed] [Google Scholar]
  12. B. K. Ganser, et. al., Assembly and Analysis of Conical Models for the HIV-1 Core. Science 80 (1999) 80–83. [CrossRef] [PubMed] [Google Scholar]
  13. S. Gillmor, J. Lee and X. Ren, The role of Gauss curvature in a membrane phase separation problem. Physica D 240 (2011) 1913–1927. [CrossRef] [Google Scholar]
  14. D. Goldman, C.B. Muratov and S. Serfaty, The Gamma-limit of the two-dimensional Ohta−Kawasaki energy. I. Droplet density. Arch. Rat. Mech. Anal. 210 (2013) 581–613. [CrossRef] [Google Scholar]
  15. D. Goldman, C.B. Muratov and S. Serfaty, The Gamma-limit of the two-dimensional Ohta−Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy. Arch. Rat. Mech. Anal. 212 (2014) 445–501. [CrossRef] [Google Scholar]
  16. T. Kohyama, D.M. Kroll and G. Gompper, Budding of crystalline domains in fluid membranes. Phys. Rev. E 68 (2003) 061905. [CrossRef] [Google Scholar]
  17. F. Morgan, M. Hutchings and H. Howards, The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature. Trans. Amer. Math. Soc. 352 (2000) 4889–4909. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Morini and P. Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains. SIAM J. Math. Anal. 46 (2014) 2033–2051. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Equ. 1 (1993) 169–204. [Google Scholar]
  20. C.B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299 (2010) 45–87. [CrossRef] [Google Scholar]
  21. T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts. Macromolecules 19 (1986) 2621–2632. [CrossRef] [Google Scholar]
  22. M.A. Peletier and M. Veneroni, Stripe patterns in a model for block copolymers. Math. Model. Meth. Appl. Sci. 20 (2010) 843–907. [CrossRef] [Google Scholar]
  23. X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2003) 193–238. [CrossRef] [MathSciNet] [Google Scholar]
  24. X. Ren and J. Wei, On the spectra of three dimensional lamellar solutions of the diblock copolymer problem. SIAM J. Math. Anal. 35 (2003) 1–32. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Ren and J. Wei, Oval shaped droplet solutions in the saturation process of some pattern formation problems. SIAM J. Math. Anal. 70 (2009) 1120–1138. [CrossRef] [Google Scholar]
  26. M. Ritore, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Commun. Anal. Geom. 9 (2001) 1093–1138. [Google Scholar]
  27. E.N. Spadaro, Uniform energy and density distribution: diblock copolymers’ functional. Interfaces Free Bound. 11 (2009) 447–474. [CrossRef] [MathSciNet] [Google Scholar]
  28. P. Sternberg and I. Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13 (2011) 155–169. [CrossRef] [MathSciNet] [Google Scholar]
  29. P. Tang, F. Qiu, H. Zhang and Y. Yang, Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method. Phys. Rev. E 72 (2005) 016710. [CrossRef] [Google Scholar]
  30. I. Topaloglu, On a nonlocal isoperimetric problem on the two-sphere. Commun. Pure Appl. Anal. 12 (2013) 597–620. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Varea, J.L. Aragon and R.A. Barrio, Turing patterns on a sphere. Phys. Rev. E 60 (1999) 4588–4592. [CrossRef] [Google Scholar]
  32. N.K. Yip, Structure of stable solutions of a one-dimensional variational problem. ESAIM: COCV 12 (2006) 721–751. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.