Free Access
Volume 21, Number 2, April-June 2015
Page(s) 301 - 323
Published online 14 January 2015
  1. D.A. Allwood et al., Submicrometer ferromagnetic NOT gate and shift register. Science 296 (2002) 2003–2006. [CrossRef] [PubMed] [Google Scholar]
  2. F. Alouges and A. Soyeur, On global weak solutions for Landau–Lifshitz equations: existence and nonuniqueness. Nonlinear Anal. 18 (1992) 1070–1084. [CrossRef] [Google Scholar]
  3. D. Atkinson et al., Magnetic domain-wall dynamics in a submicrometre ferromagnetic structure. Nature Mater. 2 (2003) 85–87. [CrossRef] [PubMed] [Google Scholar]
  4. G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi and J.L. Erskine, Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nature Mater. 4 (2005) 741–744. [CrossRef] [PubMed] [Google Scholar]
  5. F. Brown, Micromagnetics. Wiley, New York (1963). [Google Scholar]
  6. G. Carbou and S. Labbé, Stability for walls in ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 273–290. [MathSciNet] [Google Scholar]
  7. G. Carbou and P. Fabrie, Regular solutions for Landau–Lifshitz equation in R3. Commun. Appl. Anal. 5 (2001) 17–30. [MathSciNet] [Google Scholar]
  8. G. Carbou and S. Labbé, Stabilization of walls for nanowires of finite length. ESAIM: COCV 18 (2012) 1–21. [CrossRef] [EDP Sciences] [Google Scholar]
  9. G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51–59. [MathSciNet] [Google Scholar]
  10. G. Carbou, S. Labbé and E. Trélat, Smooth control of nanowires by means of a magnetic field. Commun. Pure Appl. Anal. 8 (2009) 871–879. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.-M. Coron and E. Trélat, Global steady-state controllability of 1-D semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1-D semilinear wave equations. Commun. Contemp. Math. 8 (2006) 535–567. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. De Simone, H. Knüpfer and F. Otto, 2 − d stability of the Néel wall. Calc. Var. Partial Differ. Equ. 27 (2006) 233–253. [CrossRef] [Google Scholar]
  14. Y. Egorov and V. Kondratiev, On spectral theory of elliptic operators. Birkhäuser (1996). [Google Scholar]
  15. J. Grollier et al., Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83 (2003) 509–511. [CrossRef] [Google Scholar]
  16. A. Hubert and R. Schäfer, Magnetic domains: the analysis of magnetic microstructures. Springer-Verlag (2000). [Google Scholar]
  17. R. Ignat and B. Merlet, Lower bound for the energy of Bloch Walls in micromagnetics. Arch. Ration. Mech. Anal. 199 (2011) 369–406. [CrossRef] [Google Scholar]
  18. H.K. Khalil, Nonlinear Systems. Macmillan Publishing Company, New York (1992). [Google Scholar]
  19. S. Labbé, Y. Privat and E. Trélat, Stability properties of steady-states for a network of ferromagnetic nanowires. J. Differ. Equ. 253 (2012) 1709–1728. [CrossRef] [Google Scholar]
  20. L. Landau and E. Lifshitz, Electrodynamics of continuous media, Course of theoretical Physics. Vol. 8. Translated from the russian by J.B. Sykes and J.S. Bell. Pergamon Press, Oxford-London-New York-Paris, Addison-Wesley Publishing Co., Inc., Reading, Mass (1960). [Google Scholar]
  21. C. Melcher, Global solvability of the Cauchy problem for the Landau–Lifshitz-Gilbert equation in higher dimensions. Indiana University Math. J. 61 (2013) 1175–1200. [CrossRef] [Google Scholar]
  22. C. Melcher and M. Ptashnyk, Landau–Lifshitz-Slonczewski equations: global weak and classical solutions. SIAM J. Math. Anal. 45 (2013) 407–429. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Ono et al., Propagation of a domain wall in a submicrometer magnetic wire. Science 284 (1999) 468–470. [CrossRef] [PubMed] [Google Scholar]
  24. S. Parkin et al., Magnetic domain-wall racetrack memory. Science 320 (2008) 190–194. [CrossRef] [PubMed] [Google Scholar]
  25. D. Sanchez, Behaviour of the Landau–Lifshitz equation in a periodic thin layer. Asymptot. Anal. 41 (2005) 41–69. [MathSciNet] [Google Scholar]
  26. E. Trélat, Contrôle optimal (French) [Optimal control], Théorie & applications [Theory and applications]. Math. Concrètes [Concrete Mathematics]. Vuibert, Paris (2005). [Google Scholar]
  27. M. Tsoi, R.E. Fontana and S.S.P. Parkin, Magnetic domain wall motion triggered by an electric current. Appl. Phys. Lett. 83 (2003) 2617–2619. [CrossRef] [Google Scholar]
  28. A. Visintin, On Landau–Lifshitz equations for ferromagnetism. Japan J. Appl. Math. 2 (1985) 69–84. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Zettl, Sturm–Liouville theory. Vol. 121 of Math. Surveys & Monographs. AMS, Providence (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.