Free Access
Issue
ESAIM: COCV
Volume 21, Number 2, April-June 2015
Page(s) 465 - 486
DOI https://doi.org/10.1051/cocv/2014034
Published online 04 March 2015
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  2. G. Allaire and L. Friz, Localization of high-frequence waves propagating in a locally periodic medium. In vol. 140A, Proc. of Roy. Soc. Edinburgh (2010) 897–926. [Google Scholar]
  3. G. Allaire, M. Palombaro and J. Rauch, Diffractive behavior of the wave equation in periodic media: weak convergence analysis. Ann. Mat. Pura Appl. 188 (2009) 561–589. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). [Google Scholar]
  5. S. Brahim-Otsmane, G.A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197–231. [Google Scholar]
  6. M. Brassart and M. Lenczner, A two scale model for the periodic homogenization of the wave equation. J. Math. Pure Appl. 93 (2010) 474–517. [CrossRef] [Google Scholar]
  7. J. Casado-Díaz and I. Gayte, A general compactness result and its application the two-scale convergence of almost periodic functions. C. R. Acad. Sci. Paris I 323 (1996) 329–334. [Google Scholar]
  8. J. Casado-Díaz and I. Gayte, The two-scale convergence method applied to generalized Besicovitch spaces. Proc. Roy. Soc. London A 458 (2002) 2925–2946. [CrossRef] [Google Scholar]
  9. J. Casado-Díaz, J. Couce-Calvo, F. Maestre and J.D. Martín-Gómez, Homogenization and corrector for the wave equation with discontinuos coefficients in time. J. Math. Anal. Appl. 379 (2011) 664–681. [CrossRef] [Google Scholar]
  10. J. Casado-Díaz, J. Couce-Calvo, F. Maestre and J.D. Martín-Gómez, Homogenization and correctors for the wave equation with periodic coefficients. Math. Models Methods Appl. Sci. 24 (2014) 1343–1388. [CrossRef] [Google Scholar]
  11. F. Colombini and S. Spagnolo, On the convergence of solutions of hyperbolic equations. Commun. Partial Differ. Eq. 3 (1978) 77–103. [CrossRef] [Google Scholar]
  12. G.A. Francfort and F. Murat, Oscillations and energy densities in the wave equation. Commun. Partial Differ. Eq. 17 (1992) 1785–1865. [CrossRef] [Google Scholar]
  13. F. Murat, H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique, 1977-78. Université d’Alger; F. Murat, L. Tartar. H-convergence. Topics in the Mathematical Modelling of Composite Materials. In vol. 31 of Progr. Nonlin. Differ. Eq. Appl., edited by L. Cherkaev and R.V. Kohn. Birkaüser, Boston (1998) 21–43. [Google Scholar]
  14. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Nguetseng, Homogenization structures and applications I. Z. Anal. Anwen. 22 (2003) 73–107. [CrossRef] [Google Scholar]
  16. G. Nguetseng, M. Sango and J.L. Woukeng, Reiterated ergodic algebras and applications. Commun. Math. Phys. 300 (2010) 835–876. [CrossRef] [Google Scholar]
  17. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571–597. [Google Scholar]
  18. L. Tartar, The general theory of the homogenization. A personalized introduction. Springer, Berlin Heidelberger (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.