Free Access
Issue
ESAIM: COCV
Volume 21, Number 2, April-June 2015
Page(s) 513 - 534
DOI https://doi.org/10.1051/cocv/2014036
Published online 10 March 2015
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125–145. [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. Clarendon Press, Oxford, 2000. [Google Scholar]
  3. M. Baía, M. Chermisi, J. Matias and P.M. Santos, Lower semicontinuity and relaxation of signed functionals with linear growth in the context of Formula -quasiconvexity. Calc. Var. Partial Differ. Equ. 47 (2013) 465–498. [CrossRef] [Google Scholar]
  4. J.M. Ball and J.E. Marsden, Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86 (1984) 251–277. [CrossRef] [Google Scholar]
  5. L. Beck and T. Schmidt, On the Dirichlet problem for variational integrals in BV. J. Reine Angew. Math. 674 (2013) 113–194. [MathSciNet] [Google Scholar]
  6. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,RN) for integrands f(x,u,u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  8. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A. Kałamajska, S. Krömer and M. Kružík, Sequential weak continuity of null lagrangians at the boundary. Calc. Var. Partial Differ. Equ. 49 (2014) 1263–1278. [CrossRef] [Google Scholar]
  11. J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in W1,1 and BV. Arch. Ration. Mech. Anal. 197 (2010) 539–598. [CrossRef] [Google Scholar]
  12. J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions. Mat-report 1994-34, Math. Institute, Technical University of Denmark, 1994. [Google Scholar]
  13. J. Kristensen and F. Rindler, Relaxation of signed integral functionals in BV. Calc. Var. Partial Differ. Equ. 37 (2010) 29–62. [CrossRef] [Google Scholar]
  14. S. Krömer and M. Kružík, Oscillations and concentrations in sequences of gradients up to the boundary. J. Convex Anal. 20 (2013) 723–752. [Google Scholar]
  15. Stefan Krömer, On the role of lower bounds in characterizations of weak lower semicontinuity of multiple integrals. Adv. Calc. Var. 3 (2010) 387–408. [MathSciNet] [Google Scholar]
  16. M. Kružík, Quasiconvexity at the boundary and concentration effects generated by gradients. ESAIM: COCV 19 (2013) 679–700. [CrossRef] [EDP Sciences] [Google Scholar]
  17. A. Mielke and P. Sprenger, Quasiconvexity at the boundary and a simple variational formulation of Agmon’s condition. J. Elasticity 51 (1998) 23–41. [CrossRef] [MathSciNet] [Google Scholar]
  18. C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2 (1952) 25–53. [Google Scholar]
  19. F. Rindler and G. Shaw, Strictly continuous extensions and convex lower semicontinuity of functionals with linear growth. Preprint arXiv:1312.4554v2 [math.AP] (2013). [Google Scholar]
  20. P. Sprenger, Quasikonvexität am Rande und Null-Lagrange-Funktionen in der nichtkonvexen Variationsrechnung. Ph.D. thesis, Universität Hannover (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.