Free Access
Volume 21, Number 3, July-September 2015
Page(s) 603 - 624
Published online 01 May 2015
  1. A. Aftalion, Vortices in Bose−Einstein Condensates, vol. 67 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser (2006). [Google Scholar]
  2. A. Aftalion, R.L. Jerrard and J. Royo-Letelier, Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260 (2011) 2387–2406. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Aftalion and J. Royo-Letelier, A minimal interface problem arising from a two component Bose−Einstein condensate via Γ-convergence. Calc. Var. Partial Differ. Eqs. 52 (2015) 165–197. [CrossRef] [Google Scholar]
  4. L. Ambrosio, N Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford University Press (2000). [Google Scholar]
  5. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105–123. [MathSciNet] [Google Scholar]
  6. P. Ao and S.T. Chui, Binary Bose−Einstein condensate mixtures in weakly and strongly segregated phases. Phys. Rev. A 58 (1998) 4836–4840. [CrossRef] [Google Scholar]
  7. R. A. Barankov, Boundary of two mixed Bose−Einstein condensates. Phys. Rev. A 66 (2002) 013612. [CrossRef] [Google Scholar]
  8. H. Berestycki, T.C. Lin, J. Wei and C. Zhao, On phase-separation model: Asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208 (2013) 163–200. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Berestycki, S. Terracini, K. Wang and J. Wei, On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243 (2013) 102–126. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Bouchitté, Singular perturbations of variational problems arising from a two-phase transition model. Appl. Math. Optim. 21 (1990) 289–314. [CrossRef] [MathSciNet] [Google Scholar]
  11. A Braides, Approximation of Free-Discontinuity Problems. Vol. 1694 of Lect. Notes Math. Springer Berlin Heidelberg (1998). [Google Scholar]
  12. A. Braides, Γ-convergence for beginners. Vol. 22. Oxford Lect. Series Math. Appl. Oxford University Press, Oxford (2002). [Google Scholar]
  13. A. Capella, C. Melcher and F. Otto, Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls. Nonlinearity 20 (2007) 2519–2537. [CrossRef] [Google Scholar]
  14. M. Chermisi and C. Muratov, One-dimensional Néel walls under applied magnetic fields. Nonlinearity 26 (2013) 2935–2950. [CrossRef] [Google Scholar]
  15. M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195 (2005) 524–560. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman and E.A. Cornell, Dynamics of component separation in a binary mixture of Bose−Einstein condensates. Phys. Rev. Lett. 81 (1998) 1539–1542. [CrossRef] [Google Scholar]
  17. R. Ignat and V. Millot, The critical velocity for vortex existence in a two-dimensional rotating Bose−Einstein condensate. J. Funct. Anal. 233 (2006) 260–306. [CrossRef] [MathSciNet] [Google Scholar]
  18. G.D. Karali and C. Sourdis, The ground state of a Gross−Pitaevskii energy with general potential in the Thomas−Fermi limit. To appear in Arch. Rational Mech. Anal. (2015) Doi:10.1007/s00205-015-0844-3. [Google Scholar]
  19. K. Kasamatsu, M. Tsubota and M. Ueda, Vortices in multicomponent Bose−Einstein condensates. Int. J. Mod. Phys. B 19 (1835) 2005. [Google Scholar]
  20. K. Kasamatsu, Y. Yasui and M. Tsubota, Macroscopic quantum tunneling of two-component Bose−Einstein condensates. Phys. Rev. A 64 (053605) (2001). [CrossRef] [Google Scholar]
  21. L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  22. E.H. Lieb and M. Loss, Analysis. In vol. 14 of Grad. Stud. Math. American Mathematical Society, Providence, RI (1997). [Google Scholar]
  23. P. Mason and A. Aftalion, Classification of the ground states and topological defects in a rotating two-component Bose−Einstein condensate. Phys. Rev. A 84 (2011) 033611. [CrossRef] [Google Scholar]
  24. I.E. Mazets, Waves on an interface between two phase-separated Bose−Einstein condensates. Phys. Rev. A 65 (2002) 033618. [CrossRef] [Google Scholar]
  25. D.J. McCarron, H.W. Cho, D.L. Jenkin, M. P. Köppinger and S.L. Cornish, Dual-species Bose−Einstein condensate of 87Rb and 133Cs. Phys. Rev. A 84 (2011) 011603. [CrossRef] [Google Scholar]
  26. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98 (1987) 123–142. [Google Scholar]
  27. B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm. Pure Appl. Math. 63 (2010) 267–302. [MathSciNet] [Google Scholar]
  28. P. Öhberg and S. Stenholm, Hartree−Fock treatment of the two-component Bose−Einstein condensate. Phys. Rev. A 57 (1998) 1272–1279. [CrossRef] [Google Scholar]
  29. S.B. Papp, J.M. Pino and C.E. Wieman, Tunable miscibility in a dual-species Bose−Einstein condensate. Phys. Rev. Lett. 101 (2008) 040402. [CrossRef] [PubMed] [Google Scholar]
  30. J. Royo-Letelier, Segregation and symmetry breaking of strongly coupled two-component Bose−Einstein condensates in a harmonic trap. Calc. Var. Partial Differ. Eqs. 49 (2014) 103–124. [CrossRef] [Google Scholar]
  31. E. Timmermans, Phase separation of Bose−Einstein condensates. Phys. Rev. Lett. 81 (1998) 5718–5721. [CrossRef] [Google Scholar]
  32. B. Van Schaeybroeck, Interface tension of Bose−Einstein condensates. Phys. Rev. A 78 (2008) 023624. [CrossRef] [Google Scholar]
  33. J. Wei and T. Weth, Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21 (2008) 305–317. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.