Free Access
Volume 21, Number 4, October-December 2015
Page(s) 1120 - 1149
Published online 30 June 2015
  1. R.A. Adams, Sobolev spaces. Pure Appl. Math. Academic Press, New York (1978). [Google Scholar]
  2. S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymp. Anal. 49 (2006) 87–108. [Google Scholar]
  3. S. Amstutz, The topological asymptotic for the Navier-Stokes equations. ESAIM: COCV 11 (2010) 401–425. [Google Scholar]
  4. S. Amstutz and A.A. Novotny, Topological asymptotic analysis of the Kirchhoff plate bending problem. ESAIM: COCV 17 (2011) 705–721. [CrossRef] [EDP Sciences] [Google Scholar]
  5. G. Aubert and A. Drogoul, Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images. C.R. Math. 352 (2014) 609–613. [CrossRef] [Google Scholar]
  6. D. Auroux, From restoration by topological gradient to medical image segmentation via an asymptotic expansion. Math. Comput. Model. 49 (2009) 2191–2205. [CrossRef] [Google Scholar]
  7. D. Auroux, M. Masmoudi and L. Jaafar Belaid, Image restoration and classification by topological asymptotic expansion, in Variational Formulations in Mechanics: Theory and Applications. Edited by E. Taroco, E.A. de Souza Neto and A.A. Novotny. CIMNE, Barcelona, Spain (2007) 23–42. [Google Scholar]
  8. L. Jaafar Belaid, M. Jaoua, M. Masmoudi, and L. Siala, Application of the topological gradient to image restoration and edge detection. Eng. Anal. Boundary Elements 32 (2008) 891–899. [CrossRef] [Google Scholar]
  9. G. Chen and J. Zhou, Boundary Element Methods with Applications to Nonlinear Problems. Atlantis Stud. Math. Eng. Sci. (1992). [Google Scholar]
  10. A. Drogoul, Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging. SIAM J. Imaging Sci. 7 (2014) 2700–2731. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Drogoul, Topological gradient method applied to the detection of edges and fine structures in imaging. Ph.D. thesis, University of Nice Sophia Antipolis (2014). [Google Scholar]
  12. P.A. Martin, Exact solution of a hypersingular integral equation. J. Integral Equations Appl. 4 (1992) 197–204. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Masmoudi, The topological asymptotic. In Computational Methods for Control Applications. Vol. 16 of GAKUTO Internat. Ser. Math. Appl. Tokyo, Japan (2001). [Google Scholar]
  14. J.-C. Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems. Appl. Math. Sci. Springer, New York (2001). [Google Scholar]
  15. L. Nirenberg, On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze 13 (1959) 115–162. [Google Scholar]
  16. D. Ruiz, A note on the uniformity of the constant in the Poincaré inequality. Preprint arXiv:1208.6045 (2012). [Google Scholar]
  17. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Steger, An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 113–125. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.