Free Access
Issue
ESAIM: COCV
Volume 21, Number 4, October-December 2015
Page(s) 1178 - 1204
DOI https://doi.org/10.1051/cocv/2014063
Published online 06 July 2015
  1. F. Alabau-Boussouira, Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE’s by a single control. Math. Control Signals Systems 26 (2014) 1–46. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99 (2013) 544–576. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force. J. Math. Anal. Appl. 320 (2006) 928–943. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl. 1 (2009) 427–457. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and M. González-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ. 9 (2009) 267–291. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Controllability to the trajectories of phase-field models by one control force. SIAM J. Control Optim. 42 (2003) 1661–1680. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, The Kalman condition for the boundary controllability of coupled parabolic systems. Bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl. 96 (2011) 555–590. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Recent results on the controllability of coupled parabolic problems: a survey. Math. Control Relat. Fields 1 (2011) 267–306. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, A new relation between the condensation index of complex sequences and the null controllability of parabolic systems. C. R. Math. Acad. Sci. Paris 351 (2013) 19-20, 743–746. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains. C. R. Math. Acad. Sci. Paris 352 (2014) 391–396. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Ammar-Khodja, A. Benabdallah, M. González-Burgos and L. de Teresa, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences. J. Funct. Anal. 267 (2014) 2077–2151. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.-P. Aubin, L’analyse non linéaire et ses motivations économiques. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1984). [Google Scholar]
  13. A. Benabdallah, F. Boyer, M. González-Burgos and G. Olive, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null-controllability in cylindrical domains. SIAM J. Control Optim. 52 (2014) 2970–3001. [CrossRef] [MathSciNet] [Google Scholar]
  14. O. Bodart, M. González-Burgos and R. Pérez-García, Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient. Nonlin. Anal. 57 (2004) 687–711. [Google Scholar]
  15. F. Boyer and G. Olive, Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Math. Control Relat. Fields 4 (2014) 263–287. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components. Invent. Math. 198 (2014), no. 3, 833–880. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41 (2002) 798–819. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61. [Google Scholar]
  19. H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43 (1971) 272–292. [MathSciNet] [Google Scholar]
  20. E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability of parabolic coupled equations. J. Funct. Anal. 259 (2010) 1720–1758. [Google Scholar]
  21. E. Fernández-Cara, M. González-Burgos, S. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case. ESAIM: COCV 12 (2006) 466–483. [CrossRef] [EDP Sciences] [Google Scholar]
  22. E. Fernández-Cara and E. Zuazua,The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. [Google Scholar]
  23. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 17 (2000) 583–616. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Fernández-Cara, and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1399–1446. [MathSciNet] [Google Scholar]
  25. X. Fu, Null controllability for the parabolic equation with a complex principal part. J. Funct. Anal. 257 (2009) 1333–1354. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Vol. 34 of Lect. Notes Ser. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  27. M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot. Anal. 46 (2006) 123–162. [MathSciNet] [Google Scholar]
  28. M. González-Burgos and L. de Teresa, Controllability results for cascade systems of m coupled parabolic PDEs by one control force. Port. Math. 67 (2010) 91–113. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Guerrero, Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46 (2007) 379–394. [CrossRef] [MathSciNet] [Google Scholar]
  30. O. Yu. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003) 227–274. [CrossRef] [MathSciNet] [Google Scholar]
  31. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur.Comm. Partial Differ. Equ. 20 (1995) 335–356. [CrossRef] [Google Scholar]
  32. D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  33. I. Steinbach and F. Pezzolla, A generalized field method for multiphase transformations using interface fields, Physica. D 134 (1999) 385–393. [Google Scholar]
  34. I. Steinbach, F. Pezzolla, B. Nestler, M. SeeBelger, R. Prieler, G.J. Schimitz and J.L.L. Rezende, A phase field concept for multiphase systems. Physica D 94 (1996) 135–147. [CrossRef] [Google Scholar]
  35. L. de Teresa, Insensitizing controls for a semilinear heat equation. Comm. Partial Differ. Eq. 25 (2000) 39–72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.