Free Access
Volume 22, Number 1, January-March 2016
Page(s) 29 - 63
Published online 26 August 2015
  1. E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Eqs. 3 (1994) 329–371. [CrossRef] [Google Scholar]
  2. G. Bellettini and M. Paolini, On the area of the graph of a singular map from the plane to the plane taking three values. Adv. Calc. Var. 3 (2010) 371–386. [CrossRef] [MathSciNet] [Google Scholar]
  3. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin (1989). [Google Scholar]
  4. E. De Giorgi, On the relaxation of functionals defined on cartesian manifolds, in Developments in Partial Differential Equations and Applications in Mathematical Physics (Ferrara 1992). Plenum Press, New York (1992) 33–38. [Google Scholar]
  5. U. Dierkes, S. Hildebrandt and F. Sauvigny, Minimal Surfaces. Vol. 339 of Grundlehren der Mathematischen. Springer, Berlin (2010). [Google Scholar]
  6. U. Dierkes, S. Hildebrandt and A. Tromba, Regularity of Minimal Surfaces. Vol. 340 of Grundlehren der Mathematischen. Springer, Berlin (2010). [Google Scholar]
  7. M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations. Springer-Verlag, Berlin (1998). [Google Scholar]
  8. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). [Google Scholar]
  9. R. Gulliver, F.D. Lesley, On boundary branch points of minimizing surface. Arch. Ration. Mech. Anal. 52 (1973) 20–25. [CrossRef] [Google Scholar]
  10. H. Lewy, On the boundary of minimal surfaces. Proc. Natl. Acad. Sci USA 37 (1951) 103–110. [CrossRef] [Google Scholar]
  11. F. Morgan, Geometric Measure Theory. A Beginner’s Guide. Academic Press, Inc. Boston (1988). [Google Scholar]
  12. U. Massari and M. Miranda, Minimal Surfaces of Codimension One. Amsterdam, North-Holland (1984). [Google Scholar]
  13. M. Morse and G.B. Van Schaack, The critical point theory under general boundary condition. Ann. Math. 35 (1934) 545–571. [CrossRef] [Google Scholar]
  14. J.C.C. Nitsche, Lectures on Minimal Surfaces. Cambridge University Press, Cambridge (1989) [Google Scholar]
  15. R. Osserman, A proof of the regularity everywhere of the classical solution to Plateau’s problem. Ann. Math. 91 (1970) 550–569. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.