Free Access
Volume 22, Number 1, January-March 2016
Page(s) 112 - 133
Published online 23 November 2015
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. D.N. Arnold, J. Douglas and C.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013). [Google Scholar]
  4. Z. Cai and G. Starke, First-order system least squares for the stress-displacement formulation: Linear elasticity. SIAM J. Numer. Anal. 41 (2003) 715–730. [CrossRef] [Google Scholar]
  5. Z. Cai and G. Starke, Least squares methods for linear elasticity. SIAM J. Numer. Anal. 42 (2004) 826–842. [CrossRef] [Google Scholar]
  6. Z. Cai and S. Zhang, Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation. Math. Comput. 81 (2012) 1903–1927. [CrossRef] [Google Scholar]
  7. Z. Cai, B. Lee and P. Wang, Least squares methods for incompressible Newtonian fluid flow: Linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. [CrossRef] [Google Scholar]
  8. Z. Cai, C. Tong, P.S. Vassilevski and C. Wang, Mixed finite element methods for incompressible flow: Stationary Stokes equations. Numer. Methods Partial Differ. Equ. 26 (2010) 957–978. [Google Scholar]
  9. C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.G. Ciarlet, On Korn’s inequality. Chin. Ann. Math. B 31 (2010) 607–618. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Dain, Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. Partial Differ. Equ. 25 (2006) 535–540. [CrossRef] [Google Scholar]
  12. V.J. Ervin, J.S. Howell and I. Stanculescu, A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem. Comput. Methods Appl. Mech. Engrg. 197 (2008) 2886–2900. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Fuchs and O. Schirra, An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers. Arch. Math. (Basel) 93 (2009) 587–596. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Fuchs and S. Repin, Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient. Zap. Nauchn. sem. St.-Petersburg Odtel. Math. Inst. Steklov (POMI) 385 (2010) 224–234. [Google Scholar]
  15. G. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1064–1079. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Jakab, I. Mitrea and M. Mitrea, On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58 (2009) 2043–2071. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Jochmann, A compactness result for vector fields with divergence and curl in Lq(Ω) involving mixed boundary conditions. Appl. Anal. 66 (1997) 189–203. [CrossRef] [Google Scholar]
  18. S. Münzenmaier, First-order system least squares for generalized-Newtonian coupled Stokes-Darcy flow. Numer. Methods Partial Differ. Equ. 31 (2015) 1150–1173. [CrossRef] [Google Scholar]
  19. S. Münzenmaier and G. Starke, First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Numer. Anal. 49 (2011) 387–404. [CrossRef] [Google Scholar]
  20. J. Nečas, Sur les normes équivalentes dans Formula et sur la coercivité des formes formellement positives, in Équations aux derivées partielles. Les Presses de l’Université de Montréal (1967) 102–128. [Google Scholar]
  21. P. Neff and K. Chełmiński, Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate independent case. Proc. Roy. Soc. Edinb. A 135 (2005) 1017–1039. [CrossRef] [Google Scholar]
  22. P. Neff and I. Münch, Curl bounds Grad on SO(3). ESAIM: COCV 14 (2008) 148–159. [CrossRef] [EDP Sciences] [Google Scholar]
  23. P. Neff and J. Jeong, A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Z. Angew. Math. Mech. 89 (2009) 107–122. [CrossRef] [Google Scholar]
  24. P. Neff, K. Chełmiński, W. Müller and C. Wieners, A numerical solution method for an infinitesimal elastic-plastic Cosserat model. M3AS Math. Mod. Meth. Appl. Sci. 17 (2007) 1211–1239. [CrossRef] [Google Scholar]
  25. P. Neff, K. Chełmiński and H.D. Alber, Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case. M3AS Math. Mod. Meth. Appl. Sci. 19 (2009) 1–40. [CrossRef] [Google Scholar]
  26. P. Neff, D. Pauly and K.J. Witsch, On a canonical extension of Korn’s first inequality to H(Curl) motivated by gradient plasticity with plastic spin. C. R. Math. 349 (2011) 1251–1254. [CrossRef] [Google Scholar]
  27. P. Neff, D. Pauly and K.J. Witsch, Maxwell meets Korn: a new coercive inequality for tensor fields in RN × N with square-integrable exterior derivative. Math. Methods Appl. Sci. 35 (2012) 65–71. [CrossRef] [Google Scholar]
  28. P. Neff, I.D. Ghiba, A. Madeo, L. Placidi and G. Rosi, A unifying perspective: the relaxed linear micromorphic continuum. Cont. Mech. Thermodyn. 26 (2014) 639–681. [CrossRef] [Google Scholar]
  29. P. Neff, D. Pauly and K.J. Witsch, Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258 (2015) 1267–1302. [CrossRef] [Google Scholar]
  30. W. Pompe, Counterexamples to Korn’s inequality with non-constant rotation coefficients. Math. Mech. Solids 16 (2011) 172–176. [CrossRef] [Google Scholar]
  31. Y.G. Reshetnyak, Stability Theorems in Geometry and Analysis. Kluwer Academic Publishers, London (1994). [Google Scholar]
  32. O. Schirra, New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient. Calc. Var. Partial Differ. Equ. 43 (2012) 147–172. [CrossRef] [Google Scholar]
  33. H. Sohr, The Navier−Stokes Equations. Birkhäuser, Basel (2001). [Google Scholar]
  34. K. Yoshida, Functional Analysis. Springer-Verlag, Berlin, 6th edition (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.