Free Access
Volume 22, Number 1, January-March 2016
Page(s) 148 - 168
Published online 06 October 2015
  1. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. XLIII (1990) 999–1036. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-F. Babadjian and M.G. Mora, Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models. Quart. Appl. Math. 73 (2015) 265–316. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-F. Babadjian, G.A. Francfort and M.G. Mora, Quasistatic evolution in non-associative plasticity - the cap model. SIAM J. Math. Anal. 44 (2012) 245–292. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Bonnetier, L. Jakabčin, S. Labbé and A. Replumaz, Numerical simulation of a class of models that combine several mechanisms of dissipation: fracture, plasticity, viscous dissipation. J. Comput. Phys. 271 (2014) 397–414. [CrossRef] [Google Scholar]
  5. B. Bourdin, Une formulation variationnelle en mécanique de la rupture, théorie et mise en oeuvre numérique. Th.D. thesis, Université Paris Nord, France (1998). [Google Scholar]
  6. B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound 9 (2007) 411–430. [Google Scholar]
  7. B. Bourdin, G. Francfort and J.J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Bourdin, G. Francfort and J.J. Marigo, The variational approach to fracture. J. Elasticity 91 (2008) 1–148. [CrossRef] [Google Scholar]
  9. G. Dal Maso and R. Toader, Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867–906. [CrossRef] [Google Scholar]
  10. N. Dunford and J.T. Schwartz, Linear operators. Part I. Wiley Classics Library. John Wiley and Sons Inc., New York (1988). [Google Scholar]
  11. L.C. Evans, Partial differential equations. Grad. Stud. Math. AMS, Rhode Island (1998). [Google Scholar]
  12. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221 (1920) 133–178. [Google Scholar]
  14. F. Iurlano, A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Eqs. 51 (2014) 315–342. [Google Scholar]
  15. L. Jakabčin, Modélisation, analyse et simulation numérique de solides combinant plasticité, rupture et dissipation visqueuse. Th.D. thesis, Université de Grenoble, France (2014). [Google Scholar]
  16. C.J. Larsen, C. Ortner and E. Suli, Existence of solutions to a regularized model of dynamic fracture. M3AS 20 (2010) 1021–1048. [Google Scholar]
  17. G. Peltzer and P. Tapponnier, Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. J. Geophys. Res. 93 (1988) 15085–15117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.