Free Access
Volume 22, Number 2, April-June 2016
Page(s) 519 - 538
Published online 06 April 2016
  1. F. Antonelli, Backward-forward stochastic differential equations. Ann. Appl. Probab. 3 (1993) 777–793. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  2. M. Bossy, Some stochastic particle methods for nonlinear parabolic PDEs. ESAIM: Proc. 15 (2005) 18–57. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Bossy and D. Talay, A stochastic particle method for the McKean−Vlasov and the Burgers equation. Math. Comput. 66 (1997) 157–192. [CrossRef] [Google Scholar]
  4. R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton−Jacobi−Bellman−Isaacs equations. SIAM J. Control Optim. 47 (2008) 444–475. [Google Scholar]
  5. R. Buckdahn, J. Li and S.G. Peng, Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Proc. Appl. 119 (2009) 3133–3154. [CrossRef] [Google Scholar]
  6. R. Buckdahn, B. Djehiche, J. Li and S.G. Peng, Mean-field backward stochastic differential equations: A limit approach. Ann. Probab. 37 (2009) 1524–1565. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Chan, Dynamics of the McKean−Vlasov equation. Ann. Probab. 22 (1994) 431–441. [CrossRef] [MathSciNet] [Google Scholar]
  8. M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. [Google Scholar]
  9. T. Hao and J. Li, Backward stochastic differential equations coupled with value function and related optimal control problems. Abstr. Appl. Anal. 2014 (2014) 262713. [Google Scholar]
  10. Y. Hu and S.G. Peng, Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103 (1995) 273–283. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Kotelenez, A class of quasilinear stochastic partial differential equations of McKean−Vlasov type with mass conservation. Probab. Theory Relat. Fields 102 (1995) 159–188. [CrossRef] [Google Scholar]
  12. H. Min, Y. Peng and Y.L. Qin, Fully coupled mean-field forward-backward stochastic differential equations and stochastic maximum principle. Abstr. Appl. Anal. 2014 (2014) 839467. [Google Scholar]
  13. J. Li and Q.M. Wei, Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton−Jacobi−Bellman equations. SIAM J. Control Optim. 52 (2014) 1622–1662. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Li and Q.M. Wei, Stochastic differential games for fully coupled FBSDEs with jumps. Appl Math Optim. 71 (2015) 411–448. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Ma, P. Protter and J.M. Yong, Sloving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Relat. Fields 98 (1994) 339–359. [CrossRef] [MathSciNet] [Google Scholar]
  16. S.G. Peng, BSDE and Stochastic Optimizations, in Topics on Stochastic Analysis, edited by J.A. Yan, S.G. Peng, S.Z. Fang and L.M. Wu. Science Press, Beijing (1997) 85–138 (in Chinese). [Google Scholar]
  17. S.G. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825–843. [CrossRef] [MathSciNet] [Google Scholar]
  18. P.D. Pra and F.D. Hollander, McKean−Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84 (1996) 735–772. [CrossRef] [Google Scholar]
  19. D. Talay and O. Vaillant, A stochastic particle method with random weights for the computation of statistical solutions of McKean−Vlasov equations. Ann. Appl. Probab. 13 (2003) 140–180. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.