Free Access
Volume 22, Number 2, April-June 2016
Page(s) 562 - 580
Published online 06 April 2016
  1. Y. Achdou, Finite Difference Methods for Mean Field Games. In Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Springer (2013) 1–47. [Google Scholar]
  2. Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. [CrossRef] [MathSciNet] [Google Scholar]
  3. Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50 (2012) 77–109. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Amann and M.G. Crandall, On some existence theorems for semi-linear elliptic equations. Indiana Univ. Math. J. 27 (1978) 779–790. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Barles, A short proof of the C0-regularity of viscosity subsolutions for superquadratic viscous Hamilton-Jacobi equations and applications. Nonlin. Anal. 73 (2010) 31–47. [Google Scholar]
  6. I. Capuzzo Dolcetta, F. Leoni and A. Porretta, Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Amer. Math. Soc. 362 (2010) 4511–4536. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Cardaliaguet, Notes on Mean-Field Games (2011). [Google Scholar]
  8. P. Cardaliaguet, Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3 (2013) 473–488. [Google Scholar]
  9. P. Cardaliaguet, Weak solutions for first order mean-field games with local coupling. Preprint arXiv:1305.7015 (2013). [Google Scholar]
  10. P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side. Comm. Partial Differ. Equ. 37 (2012) 1668–1688. [Google Scholar]
  11. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games. Netw. Heterog. Media 7 (2012) 279–301. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Cardaliaguet, P. Garber, A. Porretta and D. Tonon, Second order mean field games with degenerate diffusion and local coupling. Nonlin. Differ. Eq. Appl. 22 (2015) 1287–1317. [Google Scholar]
  13. R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18 (2013). [CrossRef] [Google Scholar]
  14. R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705–2734. [Google Scholar]
  15. L.C. Evans, Further PDE methods for weak KAM theory. Calc. Var. Partial Differ. Equ. 35 (2009) 435–462. [CrossRef] [Google Scholar]
  16. L.C. Evans. Adjoint and compensated compactness methods for Hamilton-Jacobi PDE. Arch. Ration. Mech. Anal. 197 (2010) 1053–1088. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Ferreira and D. A. Gomes, On the convergence of finite state mean-field games through Γ-convergence. J. Math. Anal. Appl. 418 (2014) 211–230. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Gomes and H. Mitake, Stationary mean-field games with congestion and quadratic hamiltonians. Preprint arXiv:1407.8267. [Google Scholar]
  19. D. Gomes and S. Patrizi, Obstacle mean-field game problem. Interf. Free Boundaries 17 (2015) 55–68. [CrossRef] [Google Scholar]
  20. D. Gomes and E. Pimentel, Time dependent mean-field games with logarithmic nonlinearities. SIAM: J. Math. Anal. 47 (2015) 3798–3812. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Gomes and E. Pimentel, Local regularity for mean-field games in the whole space. Minimax Theory and its Applications 1 (2016) 65–82. [Google Scholar]
  22. D. Gomes and H. Sánchez Morgado, A stochastic Evans-Aronsson problem. Trans. Amer. Math. Soc. 366 (2014) 903–929. [CrossRef] [MathSciNet] [Google Scholar]
  23. D. Gomes and J. Saúde, Mean Field Games Models–A Brief Survey. Dyn. Games Appl. 4 (2014) 110–154. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Gomes and V. Voskanyan, Extended deterministic mean-field games. Preprint arXiv:1305.2600 (2013). [Google Scholar]
  25. D. Gomes and V. Voskanyan, Short-time existence of solutions for mean-field games with congestion. Preprint arXiv:1503.06442 (2015). [Google Scholar]
  26. D. Gomes, R. Iturriaga, H. Sánchez−Morgado and Y. Yu, Mather measures selected by an approximation scheme. Proc. Amer. Math. Soc. 138 (2010) 3591–3601. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Gomes, J. Mohr and R.R. Souza, Discrete time, finite state space mean field games. J. Math. Pures Appl. 93 (2010) 308–328. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Gomes, J. Mohr and R.R. Souza, Continuous time finite state mean-field games. Appl. Math. Optim. 68 (2013) 99–143. [CrossRef] [MathSciNet] [Google Scholar]
  29. D. Gomes, S. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games. Nonlin. Anal. 99 (2014) 49–79. [Google Scholar]
  30. D. Gomes, E. Pimentel and H. Sánchez−Morgado, Time-dependent mean-field games in the subquadratic case. Commun. Partial Differ. Equ. 40 (2015) 40–76. [CrossRef] [Google Scholar]
  31. D.A. Gomes, G.E. Pires and H. Sánchez-Morgado, A priori estimates for stationary mean-field games. Netw. Heterog. Media 7 (2012) 303–314. [CrossRef] [MathSciNet] [Google Scholar]
  32. O. Guéant, Mean Field Games and Applications to Economics. Ph.D. thesis, Université Paris Dauphine, Paris (2009). [Google Scholar]
  33. O. Guéant, A reference case for mean field games models. J. Math. Pures Appl. 92 (2009) 276–294. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. [Google Scholar]
  35. M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20 (2010) 567–588. [CrossRef] [MathSciNet] [Google Scholar]
  37. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
  38. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
  39. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  40. J.-M. Lasry and P.-L. Lions, Mean field games. Cahiers de la Chaire Finance et Développement Durable (2007). [Google Scholar]
  41. J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory. Preprint (2010). [Google Scholar]
  42. J.-M. Lasry, P.-L. Lions and O. Guéant, Mean Field Games and Applications. Paris-Princeton lectures on Mathematical Finance 2010. In Lect. Notes Math. (2011) 205. [Google Scholar]
  43. P.-L. Lions, College de france course on mean-field games, 2007−2011. [Google Scholar]
  44. P.-L. Lions, IMA, University of Minessota. Course on mean-field games. Video (2012). [Google Scholar]
  45. S .L. Nguyen and M. Huang. Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim. 50 (2012) (2907–2937). [CrossRef] [MathSciNet] [Google Scholar]
  46. E.A. Pimentel, Time dependent mean-field games. IST-UL. Ph.D. thesis, Lisbon (2013). [Google Scholar]
  47. A. Porretta, On the planning problem for the mean-field games system. Dyn. Games Appl. 4 (2013) 231–256. [CrossRef] [Google Scholar]
  48. A. Porretta, Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216 (2015) 1–62. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.