Free Access
Volume 22, Number 3, July-September 2016
Page(s) 710 - 727
Published online 16 May 2016
  1. P. Albano, P. Cannarsa, Khai T. Nguyen and C. Sinestrari, Singular gradient flow of the distance function and homotopy equivalence. Math. Ann. 356 (2013) 23–43. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Alberti, On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equ. 2 (1994) 17–27. [CrossRef] [Google Scholar]
  3. A.D. Alexandrov, Uniqueness theorems for surfaces in the large. I, II. Amer. Math. Soc. Transl. 31 (1962) 341–388. [CrossRef] [Google Scholar]
  4. L. Ambrosio, Geometric Evolution Problems, Distance Function and Viscosity Solutions. Calculus of Variations and Partial Differential Equations (Pisa, 1996), Springer, Berlin (2000) 5–93. [Google Scholar]
  5. V. Bangert, Sets with positive reach. Arch. Math. (Basel) 38 (1982) 54–57. [Google Scholar]
  6. G. Bellettini, M. Masala and M. Novaga, A conjecture of De Giorgi on the square distance function. J. Convex Anal. 14 (2007) 353–359. [Google Scholar]
  7. F. Bernard, L. Thibault and N. Zlateva, Characterizations of prox-regular sets in uniformly convex Banach spaces. J. Convex Anal. 13 (2006) 525–559. [Google Scholar]
  8. C.J. Bishop, Tree-like decompositions of simply connected domains. Rev. Mat. Iberoam. 28 (2012) 179–200. [CrossRef] [MathSciNet] [Google Scholar]
  9. C.J. Bishop and H. Hakobyan, A central set of dimension 2. Proc. Amer. Math. Soc. 136 (2008) 2453–2461. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Cannarsa and C. Sinestrari, Convexity properties of the minimum time function. Calc. Var. Partial Differ. Equ. 3 (1995) 273–298. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton−Jacobi Equations and Optimal Control. Vol. 58 of Progr. Nonlin. Differ. Equ. Appl. Birkhäuser, Boston (2004). [Google Scholar]
  12. P. Cannarsa, P. Cardaliaguet and E. Giorgieri, Hölder regularity of the normal distance with an application to a PDE model for growing sandpiles. Trans. Amer. Math. Soc. 359 (2007) 2741–2775 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Cellina, Minimizing a functional depending on ∇u and on u. Ann. Inst. Henri Poincaré, Anal. Non Lin. 14 (1997) 339–352. [CrossRef] [MathSciNet] [Google Scholar]
  14. H.I. Choi, S.W. Choi and H.P. Moon, Mathematical theory of medial axis transform. Pacific J. Math. 181 (1997) 57–88. MR 1491036 [CrossRef] [MathSciNet] [Google Scholar]
  15. F.H. Clarke, Optimization and Nonsmooth Analysis. Canadian Math. Soc. Ser. Math. John Wiley and Sons, Toronto (1983). [Google Scholar]
  16. F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-C2 property. J. Convex Anal. 2 (1995) 117–144. [Google Scholar]
  17. A. Colesanti and D. Hug, Steiner type formulae and weighted measures of singularities for semi-convex functions. Trans. Amer. Math. Soc. 352 (2000) 3239–3263 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Colombo and K.T. Nguyen, On the structure of the minimum time function. SIAM J. Control Optim. 48 (2010) 4776–4814. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Colombo and L. Thibault, Prox-regular Sets and Applications. Handbook of Nonconvex Analysis and Applications. Int. Press, Somerville, MA (2010) 99–182. [Google Scholar]
  20. G. Colombo, A. Marigonda and P.R. Wolenski, Some new regularity properties for the minimal time function. SIAM J. Control Optim. 44 (2006) 2285–2299. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Crasta and I. Fragalà, A new symmetry criterion based on the distance function and applications to PDE’s. J. Differ. Equ. 255 (2013) 2082–2099. [CrossRef] [Google Scholar]
  22. G. Crasta and I. Fragalà, A symmetry problem for the infinity Laplacian. To appear in Int. Math. Res. Not. (2014). Doi:10.1093/imrn/rnu204 [Google Scholar]
  23. G. Crasta and I. Fragalà, On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: Regularity and geometric results. Arch. Ration. Mech. Anal. 218 (2015) 1577–1607. arXiv:1410.6115 [Google Scholar]
  24. G. Crasta and A. Malusa, The distance function from the boundary in a Minkowski space. Trans. Amer. Math. Soc. 359 (2007) 5725–5759. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Crasta, I. Fragalà and F. Gazzola, A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164 (2002) 189–211. [CrossRef] [Google Scholar]
  26. G. Crasta, I. Fragalà and F. Gazzola, On the role of energy convexity in the web function approximation. Nonlin. Differ. Equ. Appl. 12 (2005) 93–109. [CrossRef] [Google Scholar]
  27. G. Crasta, I. Fragalà and F. Gazzola, Some estimates of the torsional rigidity of heterogeneous rods. Math. Nach. 280 (2007), 242–255. [CrossRef] [Google Scholar]
  28. W.L.F. Degen, Exploiting curvatures to compute the medial axis for domains with smooth boundary. Comput. Aid. Geom. Design 21 (2004) 641–660. [CrossRef] [Google Scholar]
  29. M. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions. J. Functional Anal. 123 (1994) 129–201. [CrossRef] [MathSciNet] [Google Scholar]
  30. H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. [CrossRef] [MathSciNet] [Google Scholar]
  31. I. Fragalà, F. Gazzola and B. Kawohl, Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Z. 254 (2006) 117–132. [CrossRef] [MathSciNet] [Google Scholar]
  32. D.H. Fremlin, Skeletons and central sets. Proc. London Math. Soc. 74 (1997) 701–720. [CrossRef] [MathSciNet] [Google Scholar]
  33. J. Frerking and U. Westphal, On a property of metric projections onto closed subsets of Hilbert spaces. Proc. Amer. Math. Soc. 105 (1989) 644–651. [CrossRef] [MathSciNet] [Google Scholar]
  34. J.H.G. Fu, Tubular neighborhoods in Euclidean spaces. Duke Math. J. 52 (1985) 1025–1046. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. Giusti, Metodi diretti nel Calcolo delle Variazioni. Unione Matematica Italiana, Bologna (1994). [Google Scholar]
  36. D. Hug, Generalized curvature measures and singularities of sets with positive reach. Forum Math. 10 (1998) 699–728. [MathSciNet] [Google Scholar]
  37. D. Hug, G. Last and W. Weil, A local Steiner-type formula for general closed sets and applications. Math. Z. 246 (2004) 237–272. [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2001) 21–40. [Google Scholar]
  39. Y.Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton–Jacobi equations. Commun. Pure Appl. Math. 58 (2005) 85–146. [CrossRef] [MathSciNet] [Google Scholar]
  40. A. Lieutier, Any Open Bounded Subset of Rn Has The same Homotopy Type as its Medial Axis. Proc. of 8th ACM Sympos. Solid Modeling Appl. ACM Press (2003) 65–75. [Google Scholar]
  41. C. Mantegazza and A.C. Mennucci, Hamilton−Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  42. C. Nour, R.J. Stern and J. Takche, Proximal smoothness and the exterior sphere condition. J. Convex Anal. 16 (2009) 501–514. [Google Scholar]
  43. J. Rataj and M. Zähle, Mixed curvature measures for sets of positive reach and a translative integral formula. Geom. Dedicata 57 (1995) 259–283. [CrossRef] [MathSciNet] [Google Scholar]
  44. R.T. Rockafellar, Favorable Classes of Lipschitz-Continuous Functions in Subgradient Optimization. Progr. Nondiffer. Optimiz. IIASA Collaborative Proc. Ser. CP-82, vol. 8 Int. Inst. Appl. Systems Anal., Laxenburg (1982) 125–143. [Google Scholar]
  45. J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. [Google Scholar]
  46. C. Thäle, 50 years sets with positive reach − a survey. Surv. Math. Appl. 3 (2008) 123–165. [MathSciNet] [Google Scholar]
  47. F. Wolter, Cut locus and medial axis in global shape interrogation and representation. Tech. Report Memorandum 92-2, MIT, Department of Ocean Engineering, Design Laboratory, Cambridge, MA (1993). [Google Scholar]
  48. M. Zähle, Integral and current representation of Federer’s curvature measures. Arch. Math. (Basel) 46 (1986) 557–567. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.