Free Access
Issue |
ESAIM: COCV
Volume 22, Number 3, July-September 2016
|
|
---|---|---|
Page(s) | 883 - 912 | |
DOI | https://doi.org/10.1051/cocv/2015037 | |
Published online | 23 June 2016 |
- R. Alessi, J.-J. Marigo and S. Vidoli, Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch. Ration. Mech. Anal. 214 (2014) 575–615. [CrossRef] [Google Scholar]
- R. Alessi, J.-J. Marigo and S. Vidoli, Gradient damage models coupled with plasticity: Variational formulation and main properties. Mech. Mater. 80 (2015) 351–367. [CrossRef] [Google Scholar]
- L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Math. Monogr. The Clarendon Press, Oxford University Press, New York (2000). [Google Scholar]
- G. Bouchitté, A. Mielke and T. Roubcíˇek, A complete-damage problem at small strains. Z. Angew. Math. Phys. 60 (2009) 205–236. [Google Scholar]
- H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam-London; American Elsevier, New York (1973). [Google Scholar]
- V. Crismale and G. Lazzaroni, Viscous approximation of evolutions for a coupled elastoplastic-damage model. Preprint SISSA 05/2015/MATE (2015). [Google Scholar]
- G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101–135. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 257–290. [Google Scholar]
- G. Dal Maso and R. Toader, Quasistatic crack growth in elasto-plastic materials: the two-dimensional case. Arch. Ration. Mech. Anal. 196 (2010) 867–906. [CrossRef] [Google Scholar]
- G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media 3 (2008) 567–614. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469–544. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Eq. 40 (2011) 125–181. [CrossRef] [Google Scholar]
- G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calc. Var. Partial Differ. Eq. 44 (2012) 495–541. [CrossRef] [Google Scholar]
- M. Duchoň and P. Maličký, A Helly theorem for functions with values in metric spaces. Tatra Mt. Math. Publ. 44 (2009) 159–168. [MathSciNet] [Google Scholar]
- A. Fiaschi, D. Knees and U. Stefanelli, Young-measure quasi-static damage evolution. Arch. Ration. Mech. Anal. 203 (2012) 415–453. [CrossRef] [Google Scholar]
- G.A. Francfort and A. Giacomini, Small-strain heterogeneous elastoplasticity revisited. Commut. Pure Appl. Math. 65 (2012) 1185–1241. [CrossRef] [Google Scholar]
- M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power. Int. J. Solids Struct. 33 (1996) 1083–1103. [Google Scholar]
- C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159–178. [CrossRef] [MathSciNet] [Google Scholar]
- L. Hörmander, Sur la fonction d’appui des ensembles convexes dans un espace localement convexe. Ark. Math. 3 (1954) 181–186. [CrossRef] [Google Scholar]
- D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23 (2013) 565–616. [Google Scholar]
- D. Knees, R. Rossi and C. Zanini, A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains. Preprint (2013). [Google Scholar]
- H. Matthies, G. Strang and E. Christiansen, The saddle point of a differential program, in Energy Methods in Finite Element Analysis, edited by Z.O. R. Glowinski and E. Rodin. Wiley, New York (1979) 309–318. [Google Scholar]
- A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351–382. [CrossRef] [MathSciNet] [Google Scholar]
- A. Mielke, Evolution of rate-independent systems, in Evolutionary equations. Vol. II, Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam (2005) 461–559. [Google Scholar]
- A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16 (2006) 177–209. [Google Scholar]
- A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. To appear on J. Eur. Math. Soc. (2015). [Google Scholar]
- K. Pham and J.-J. Marigo, Approche variationnelle de l’endommagement: II. Les modéles gáradient. C. R. Mécanique 338 (2010) 199–206. [CrossRef] [Google Scholar]
- K. Pham and J.-J. Marigo, From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25 (2013) 147–171. [CrossRef] [MathSciNet] [Google Scholar]
- Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039–1045. [Google Scholar]
- W. Rudin, Real and Complex Analysis. McGraw-Hill, New York (1966). [Google Scholar]
- M. Sofonea, W. Han and M. Shillor, Analysis and approximation of contact problems with adhesion or damage. Vol. 276 of Pure Appl. Math. Chapman and Hall/CRC, Boca Raton, FL (2006). [Google Scholar]
- F. Solombrino, Quasistatic evolution problems for nonhomogeneous elastic plastic materials. J. Convex Anal. 16 (2009) 89–119. [MathSciNet] [Google Scholar]
- R. Temam, Mathematical problems in plasticity. Gauthier-Villars, Paris (1985). [Translation of Problèmes mathématiques en plasticity. Gauthier-Villars, Paris (1983).] [Google Scholar]
- R. Temam and G. Strang, Duality and relaxation in the variational problem of plasticity. J. Mécanique 19 (1980) 493–527. [Google Scholar]
- M. Thomas, Quasistatic damage evolution with spatial BV-regularization. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 235–255. [Google Scholar]
- M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain-existence and regularity results. ZAMM Z. Angew. Math. Mech. 90 (2010) 88–112. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.