Issue
ESAIM: COCV
Volume 22, Number 4, October-December 2016
Special Issue in honor of Jean-Michel Coron for his 60th birthday
Page(s) 1325 - 1352
DOI https://doi.org/10.1051/cocv/2016040
Published online 03 August 2016
  1. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [Google Scholar]
  2. J.-M. Coron, Control and nonlinearity, vol. 136 of Math. Surveys Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  3. C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Probl. 24 (2008) 045001. [CrossRef] [Google Scholar]
  4. C. Conca, M. Malik and A. Munnier, Detection of a moving rigid body in a perfect fluid. Inverse Probl. 26 (2010) 095010. [CrossRef] [Google Scholar]
  5. O. Glass and L. Rosier, On the control of the motion of a boat. Math. Models Methods Appl. Sci. 23 (2013) 617–670. [CrossRef] [Google Scholar]
  6. O. Glass, F. Sueur and T. Takahashi, Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid. Ann. Sci. Éc. Norm. Supér. 45 (2012) 1–51. [CrossRef] [Google Scholar]
  7. V.I. Judovič, A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Mat. Sb. (N.S.) 64 (1964) 562–588. [MathSciNet] [Google Scholar]
  8. T. Kato, M. Mitrea, G. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains. Math. Res. Lett. 7 (2000) 643–650. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.V. Kazhikhov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. Prikl. Matem. Mekhan. 44 (1980) 947–950. [Google Scholar]
  10. K. Kikuchi, The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in R3. J. Math. Soc. Japan 38 (1986) 575–598. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Lecaros and L. Rosier, Control of underwater vehicles in inviscid fluids – I. Irrotational flows. ESAIM: COCV 20 (2014) 662–703. [CrossRef] [EDP Sciences] [Google Scholar]
  12. J.H. Ortega, L. Rosier and T. Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: M2AN 39 (2005) 79–108. [CrossRef] [EDP Sciences] [Google Scholar]
  13. J.H. Ortega, L. Rosier and T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. Henri Poincaré, Anal. Non Lin. 24 (2007) 139–165. [CrossRef] [Google Scholar]
  14. C. Rosier and L. Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid. J. Funct. Anal. 256 (2009) 1618–1641. [CrossRef] [MathSciNet] [Google Scholar]
  15. E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
  16. F. Sueur, A Kato type theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body. Commun. Math. Phys. 316 (2012) 783–808. [CrossRef] [Google Scholar]
  17. Y. Wang and A. Zang, Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differ. Eq. 252 (2012) 4259–4288. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.