Free Access
Issue
ESAIM: COCV
Volume 23, Number 1, January-March 2017
Page(s) 195 - 215
DOI https://doi.org/10.1051/cocv/2015045
Published online 02 December 2016
  1. C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994) 109–140. [MathSciNet] [Google Scholar]
  2. M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods. M3AS 21 (2011) 2069–2101. [Google Scholar]
  3. A. Ben Abda, F. Bouchon, G.H. Peichl, M. Sayeh and R. Touzani, A Dirichlet-Neumann cost functional approach for the Bernoulli problem. J. Eng. Math. 81 (2013) 157–176. [CrossRef] [Google Scholar]
  4. G.J. Beavers and D.D. Joseph, Boundary conditions of a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. [CrossRef] [Google Scholar]
  5. F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations and related models. Springer, New York (2012). [Google Scholar]
  6. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (1996). [Google Scholar]
  7. M.C. Delfour and J.-P. Zolésio, Structure of Shape Derivatives for Nonsmooth Domains. J. Funct. Anal. 104 (1992) 1–33. [CrossRef] [Google Scholar]
  8. M.C. Delfour and J.-P. Zolésio, Shapes and Geometries. SIAM (2001). [Google Scholar]
  9. K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems. Comput. Optim. Appl. 52 (2012) 69–85. [CrossRef] [Google Scholar]
  10. G.P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations. Springer Tracts in Natural Philosophy. Springer-Verlag, New York (1994). [Google Scholar]
  11. V. Girault and P.A. Raviart, Finite element methods for Navier–Stokes equations. Springer, Berlin (1980). [Google Scholar]
  12. A. Henrot and M. Pierre, Variation et Optimisation de Formes. Vol. 48 of Math. Appl. Springer (2005). [Google Scholar]
  13. R.V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography. Inverse Problems 6 (1990) 389–414. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Commun. Pure Appl. Math. 37 (1984) 289–298. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Lamboley and M. Pierre, Structure of shape derivatives around irregular domains and applications. J. Convex Analysis 14 (2007) 807–822. [Google Scholar]
  16. P. Plotnikov and J. Sokolowski, Compressible Navier–Stokes Equations. Vol. 73 of Monogr. Mat. Springer (2012). [Google Scholar]
  17. N. Saito, On the Stokes Equation with the Leak and Slip Boundary Conditions of Friction Type: Regularity of Solutions. Publ. RIMS, Kyoto Univ. 40 (2004) 345–383. [CrossRef] [Google Scholar]
  18. H. Saito and L.E. Scriven, Study of coating flow by the finite element method. J. Comput. Phys. 42 (1981) 53–76. [CrossRef] [Google Scholar]
  19. D.H. Sattinger, On the free surface of a viscous fluid motion. Proc. R. Soc. London A. 349 (1976) 183–204. [CrossRef] [Google Scholar]
  20. W.J. Silliman and L.E. Scriven, Separating flow near a static contact line: slip at a wall and shape of a free surface. J. Comput. Phys. 34 (1980) 287–313. [CrossRef] [Google Scholar]
  21. J. Sokolowski and J.-P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer (1992). [Google Scholar]
  22. V.A. Solonnikov, Solvability of three-dimensional problems with a free boundary for a stationary system of Navier–Stokes equations. J. Sov. Math. 21 (1983) 427–450. [CrossRef] [Google Scholar]
  23. V.A. Solonnikov, On some free boundary problems for the Navier–Stokes equations with moving contact points and lines. Math. Ann. 302 (1995) 743–772. [CrossRef] [MathSciNet] [Google Scholar]
  24. V.A. Solonnikov, On the problem of a moving contact angle. Nonlinear Anal. and Cont. Mech. Papers for the 65th Birthday of James Serrin (1998) 107–137. [Google Scholar]
  25. R. Verfürth, Finite element approximation of stationary Navier–Stokes equations with slip boundary condition. Habilitationsschrift, Report No. 75, University Bochum (1986). [Google Scholar]
  26. J.-P. Zolésio, An Optimal Design Procedure for Optimal Control Support, Convex Analysis and its Application. Lect. Notes Econ. Math. Syst. 144 (1977) 207–219. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.