Free Access
Volume 23, Number 2, April-June 2017
Page(s) 569 - 591
Published online 18 January 2017
  1. Y. Achdou, F.J. Buera, J.M. Lasry, P.L. Lions and B. Moll, Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372 (2014) 20130397. [CrossRef] [MathSciNet] [Google Scholar]
  2. S.R. Aiyagari, Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics 109 (1994) 659–84. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  3. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Inv. Math. 158 (2004) 227–260. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Ambrosio, N. Gigli and G. Savarè, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel (2008). [Google Scholar]
  5. G.W. Brown, Iterative solution of games by Fictitious Play. Activity Anal. Prod. Alloc. 13 (1951) 374–376. [Google Scholar]
  6. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton–Jacobi equations and optimal control. Birkhäuser, Boston (2004). [Google Scholar]
  7. P. Cardaliaguet, Weak solutions for first order mean field games with local coupling. Preprint hal-00827957. [Google Scholar]
  8. P. Cardaliaguet, Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3 (2013) 473–488. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  9. P. Cardaliaguet, G. Carlier and B. Nazaret, Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial Differ. Eq. 48 (2013) 395–420. [CrossRef] [Google Scholar]
  10. P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The master equation and the convergence problem in mean field games. Preprint arXiv:1509.0205 (2015). [Google Scholar]
  11. P. Cardaliaguet, J. Graber, A. Porretta and D. Tonon, Second order mean field games with degenerate diffusion and local coupling. Nonlin. Differ. Equ. Appl. 22 (2015) 1287–1317. [CrossRef] [Google Scholar]
  12. R. Carmona and F. Delarue, Probabilist analysis of Mean-Field Games. SIAM J. Control Optim. 51 (2013) 2705–2734. [CrossRef] [MathSciNet] [Google Scholar]
  13. R.-J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [CrossRef] [MathSciNet] [Google Scholar]
  14. O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22 (2012) 1250022. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  15. O. Guéant, P.-L. Lions and J.-M. Lasry, Mean Field Games and Applications. Paris-Princeton Lectures on Mathematical Finance 2010, edited by P. Tankov, P.-L. Lions, J.-P. Laurent, J.-M. Lasry, M. Jeanblanc, D. Hobson, O. Guéant, S. Crépey, A. Cousin. Springer, Berlin (2011) 205–266. [Google Scholar]
  16. D. Fudenberg and D.K. Levine, The theory of learning in games. MIT Press, Cambridge, MA (1998). [Google Scholar]
  17. M. Huang, P.E. Caines and R.P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. Proc. of 42nd IEEE Conf. Decision Contr., Maui, Hawaii (2003) 98–103. [Google Scholar]
  18. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inform. Syst. 6 (2006) 221–252. [CrossRef] [MathSciNet] [Google Scholar]
  19. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type. In vol. 23 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1967). [Google Scholar]
  20. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  23. P.L. Lions, Cours au Collège de France. Available at [Google Scholar]
  24. K. Miyasawa, On the convergence of the learning process in a 2 × 2 non-zero-sum two-person game. Princeton University, NJ (1961). [Google Scholar]
  25. D. Monderer and L.S. Shapley, Potential games. Games Econ. Behav. 14 (1996) 124–143. [CrossRef] [Google Scholar]
  26. D. Monderer and L.S. Shapley, Fictitious play property for games with identical interests. J. Econ. Theory 68 (1996) 258–265. [CrossRef] [Google Scholar]
  27. J. Robinson, An iterative method of solving a game. Ann. Math. (1951) 296–301. [Google Scholar]
  28. L.S. Shapley, Some topics in two-person games. Ann. Math. Stud. 5 (1964) 1–28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.