Free Access
Issue
ESAIM: COCV
Volume 23, Number 2, April-June 2017
Page(s) 569 - 591
DOI https://doi.org/10.1051/cocv/2016004
Published online 18 January 2017
  1. Y. Achdou, F.J. Buera, J.M. Lasry, P.L. Lions and B. Moll, Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372 (2014) 20130397. [CrossRef] [MathSciNet]
  2. S.R. Aiyagari, Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly Journal of Economics 109 (1994) 659–84. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  3. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Inv. Math. 158 (2004) 227–260. [CrossRef] [MathSciNet]
  4. L. Ambrosio, N. Gigli and G. Savarè, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel (2008).
  5. G.W. Brown, Iterative solution of games by Fictitious Play. Activity Anal. Prod. Alloc. 13 (1951) 374–376.
  6. P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton–Jacobi equations and optimal control. Birkhäuser, Boston (2004).
  7. P. Cardaliaguet, Weak solutions for first order mean field games with local coupling. Preprint hal-00827957.
  8. P. Cardaliaguet, Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3 (2013) 473–488. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  9. P. Cardaliaguet, G. Carlier and B. Nazaret, Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial Differ. Eq. 48 (2013) 395–420. [CrossRef]
  10. P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The master equation and the convergence problem in mean field games. Preprint arXiv:1509.0205 (2015).
  11. P. Cardaliaguet, J. Graber, A. Porretta and D. Tonon, Second order mean field games with degenerate diffusion and local coupling. Nonlin. Differ. Equ. Appl. 22 (2015) 1287–1317. [CrossRef]
  12. R. Carmona and F. Delarue, Probabilist analysis of Mean-Field Games. SIAM J. Control Optim. 51 (2013) 2705–2734. [CrossRef] [MathSciNet]
  13. R.-J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [CrossRef] [MathSciNet]
  14. O. Guéant, Mean field games equations with quadratic hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22 (2012) 1250022. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  15. O. Guéant, P.-L. Lions and J.-M. Lasry, Mean Field Games and Applications. Paris-Princeton Lectures on Mathematical Finance 2010, edited by P. Tankov, P.-L. Lions, J.-P. Laurent, J.-M. Lasry, M. Jeanblanc, D. Hobson, O. Guéant, S. Crépey, A. Cousin. Springer, Berlin (2011) 205–266.
  16. D. Fudenberg and D.K. Levine, The theory of learning in games. MIT Press, Cambridge, MA (1998).
  17. M. Huang, P.E. Caines and R.P. Malhamé, Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. Proc. of 42nd IEEE Conf. Decision Contr., Maui, Hawaii (2003) 98–103.
  18. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inform. Syst. 6 (2006) 221–252. [CrossRef] [MathSciNet]
  19. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type. In vol. 23 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1967).
  20. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. [CrossRef] [MathSciNet]
  21. J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. [CrossRef] [MathSciNet]
  22. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet]
  23. P.L. Lions, Cours au Collège de France. Available at www.college-de-france.fr.
  24. K. Miyasawa, On the convergence of the learning process in a 2 × 2 non-zero-sum two-person game. Princeton University, NJ (1961).
  25. D. Monderer and L.S. Shapley, Potential games. Games Econ. Behav. 14 (1996) 124–143. [CrossRef]
  26. D. Monderer and L.S. Shapley, Fictitious play property for games with identical interests. J. Econ. Theory 68 (1996) 258–265. [CrossRef]
  27. J. Robinson, An iterative method of solving a game. Ann. Math. (1951) 296–301.
  28. L.S. Shapley, Some topics in two-person games. Ann. Math. Stud. 5 (1964) 1–28.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.