Free Access
Volume 23, Number 2, April-June 2017
Page(s) 721 - 749
Published online 26 January 2017
  1. F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015–1020. [CrossRef] [MathSciNet]
  2. F. Alabau, Indirect boundary stabilization of weakly coupled systems. SIAM J. Control Optim. 41 (2002) 511–541. [CrossRef] [MathSciNet]
  3. F. Alabau-Boussouira, Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires. C. R. Acad. Sci. Paris Sér I Math. 338 (2004) 35–40. [CrossRef]
  4. F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51 (2005) 61–105. [CrossRef] [MathSciNet]
  5. F. Alabau-Boussouira, Piecewise multiplier method and nonlinear integral inequality for Petrowsky equation with nonlinear dissipation. J. Evol. Equ. 6 (2006) 95–112. [CrossRef] [MathSciNet]
  6. F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. NoDEA 14 (2007) 643–669. [CrossRef]
  7. F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems. J. Differ. Equ. 248 (2010) 1473–1517. [CrossRef]
  8. F. Alabau-Boussouira, New trends towards lower energy estimates and optimality for nonlinearly damped vibrating systems. J. Differ. Equ. 249 (2010) 1145–1178. [CrossRef]
  9. F. Alabau-Boussouira, Strong lower energy estimates for nonlinearly damped Timoshenko beams and Petrowsky equations. NoDEA 18 (2011) 571–597. [CrossRef] [MathSciNet]
  10. F. Alabau-Boussouira, On some recent advances on stabilization for hyperbolic equations. Vol. 2048 of Lect. Note Math. CIME Foundation Subseries Control of Partial Differential Equations. Springer Verlag (2012) 101.
  11. F. Alabau-Boussouira and K. Ammari, Sharp energy estimates for nonlinearly locally damped PDEs via observability for the associated undamped system. J. Funct. Anal. 260 (2011) 2424–2450. [CrossRef] [MathSciNet]
  12. F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems. ESAIM: COCV 18 (2012) 548–582. [CrossRef] [EDP Sciences]
  13. F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications. J. Math. Pures Appl. 99 (2013) 544–576. [CrossRef] [MathSciNet]
  14. F. Alabau, P. Cannarsa and V. Komornik, Indirect internal damping of coupled systems. J. Evol. Equ. 2 (2002) 127–150. [CrossRef] [MathSciNet]
  15. F. Alabau-Boussouira, P. Cannarsa and R. Guglielmi, Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Math. Control Relat. Fields 1 (2011) 413–436. [CrossRef] [MathSciNet]
  16. F. Alabau-Boussouira, Y. Privat and E. Trélat, Nonlinear damped partial differential equations and their uniform discretizations. Preprint arXiv:1506.04163 (2015).
  17. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [CrossRef] [MathSciNet]
  18. M. Bellassoued, Rate of decay of solution of the wave equation with arbitrary localized nonlinear damping. J. Differ. Equ. 211 (2005) 303–332. [CrossRef]
  19. G. Chen, A note on boundary stabilization of the wave equation. SIAM J. Control Optim. 19 (1981) 106–113. [CrossRef] [MathSciNet]
  20. Y. Cui and Z. Wang, Asymptotic stability of wave equations coupled by velocities. Math. Control Relat. Fields 6 (2016) 429–446. [CrossRef] [MathSciNet]
  21. B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Annales Scientifiques de l’École Normale Supérieure 36 (2003) 525–551. [CrossRef] [MathSciNet]
  22. X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62 (2011) 667–680. [CrossRef] [MathSciNet]
  23. X. Fu, Sharp decay rates for the weakly coupled hyperbolic system with one internal damping. SIAM J. Control Optim. 50 (2012) 1643–1660. [CrossRef] [MathSciNet]
  24. R. Joly and C. Laurent, Stabilization for the semilinear wave equation with geometric control condition. Ann. PDE 6 (2012) 1089–1119. [CrossRef]
  25. J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987) 1417–1429. [CrossRef] [MathSciNet]
  26. V. Komornik, Exact controllability and stabilization: The Multiplier Method. Vol. 36 of Collection RMA. Masson-John Wiley, Paris-Chicester (1994).
  27. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 8 (1993) 507–533.
  28. G. Lebeau, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993). Math. Phys. Study. Kluwer Acad. Publ., Dordrecht (1996) 73–109.
  29. G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration Mech. Anal. 148 (1999) 179–231. [CrossRef] [MathSciNet]
  30. J.-L. Lions, Contrôlabilité exacte et stabilisation de systèmes distributés. Vol. 1 of Collection RMA. Masson, Paris (1988).
  31. K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997) 1574–1590. [CrossRef] [MathSciNet]
  32. W.-J. Liu and E. Zuazua, Decay rates for dissipative wave equations. Ricerche di Matematica 48 (1999) 61–75. [MathSciNet]
  33. P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complut. 12 (1999) 251–283. [MathSciNet]
  34. P. Martinez, A new method to obtain decay rate estimates for dissipative systems. ESAIM: COCV 4 (1999) 419–444. [CrossRef] [EDP Sciences]
  35. P. Martinez and J. Vancostenoble, Exponential stability for the wave equation with weak nonmonotone damping. Portugal. Math. 57 (2000) 285–310. [MathSciNet]
  36. M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305 (1996) 403–417. [CrossRef] [MathSciNet]
  37. A. Soufyane, Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér I Math. 328 (1999) 731–734. [CrossRef] [MathSciNet]
  38. J. Vancostenoble, Optimalité d’estimation d’énergie pour une équation des ondes amortie. C. R. Acad. Sci. Paris série I 328 (1999) 777–782. [CrossRef] [MathSciNet]
  39. J. Vancostenoble and P. Martinez, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks. SIAM J. Control Optim. 39 (2000) 776–797. [CrossRef] [MathSciNet]
  40. E. Zuazua, Uniform stabilization of the wave equation by nonlinear feedbacks. SIAM J. Control Optim. 28 (1989) 265–268.
  41. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Part. Differ. Equ. 15 (1990) 205–235. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.