Free Access
Volume 23, Number 3, July-September 2017
Page(s) 1129 - 1143
Published online 12 May 2017
  1. L. Baudouin and A. Mercado, An inverse problem for Schrodinger equations with discontinuous main coefficient. Applicable Analysis 87 (2008) 1145–1165. [Google Scholar]
  2. K. Beauchard, J.-M. Coron, and P. Rouchon, Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Belhadj, J. Salomon, and G. Turinici, Ensemble controllability and discrimination of perturbed bilinear control systems on connected, simple, compact Lie groups. Eur. J. Control 22 (2015) 23–29. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bonnabel, M. Mirrahimi, and P. Rouchon, Observer-based Hamiltonian identification for quantum systems. Automatica 45 (2009) 1144–1155. [Google Scholar]
  5. C. Brif, R. Chakrabarti, and H. Rabitz, Control of quantum phenomena: past, present and future. New J. Phys. 12 (2010) 075008. [Google Scholar]
  6. C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics, Vol 1. Wiley, New-York (1977). [Google Scholar]
  7. D. D’Alessandro, Introduction to quantum control and dynamics. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL (2008). [Google Scholar]
  8. A. Donovan and H. Rabitz, Exploring the Hamiltonian inversion landscape. Phys. Chem. Chem. Phys. 16 (2014) 15615–15622. [CrossRef] [PubMed] [Google Scholar]
  9. J.W. Eaton, D. Bateman, S. Hauberg and R. Wehbring, GNU Octave version 4.0.0 manual: a high-level interactive language for numerical computations. Available at (2015). [Google Scholar]
  10. J.W. Eaton et al., GNU Octave 4.0.0. Available at (2015). [Google Scholar]
  11. J.M. Geremia and H. Rabitz, Optimal Hamiltonian identification: The synthesis of quantum optimal control and quantum inversion. J. Chem. Phys. 118 (2003) 5369–5382. [Google Scholar]
  12. D. Hocker, Co. Brif, M.D. Grace, A. Donovan and T.-S. Ho, K. Moore Tibbetts, R. Wu and H. Rabitz, Characterization of control noise effects in optimal quantum unitary dynamics. Phys. Rev. A 90 (2014) 062309. [Google Scholar]
  13. V. Jurdjevic and H.J. Sussmann. Control systems on Lie groups. J. Differ. Eq. 12 (1972) 313–329. [CrossRef] [Google Scholar]
  14. K. Khodjasteh and L. Viola, Dynamical quantum error correction of unitary operations with bounded controls. Phys. Rev. A 80 (2009) 032314. [Google Scholar]
  15. K. Khodjasteh and L. Viola, Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102 (2009) 080501. [CrossRef] [PubMed] [Google Scholar]
  16. C. Le Bris, M. Mirrahimi, H. Rabitz and G. Turinici, Hamiltonian identification for quantum systems: well-posedness and numerical approaches. ESAIM: COCV 13 (2007) 378–395. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.-S. Li and N. Khaneja, Control of inhomogeneous quantum ensembles. Phys. Rev. A 73 (2006) 030302. [Google Scholar]
  18. Y. Maday and J. Salomon, A greedy algorithm for the identification of quantum systems. In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. Proc. of the 48th IEEE Conference on CDC/CCC 2009 (2009) 375–379. [Google Scholar]
  19. A.M. Souza, G.A. Álvarez and D. Suter, Experimental protection of quantum gates against decoherence and control errors. Phys. Rev. A 86 (2012) 050301. [Google Scholar]
  20. G. Turinici, Beyond bilinear controllability: applications to quantum control. In Control of coupled partial differential equations, Vol. 155 of Internat. Ser. Numer. Math. Oberwolfach, Allemagne. Birkhauser (2007) 293–309. [Google Scholar]
  21. G. Turinici, V. Ramakhrishna, B. Li and H. Rabitz, Optimal discrimination of multiple quantum systems: controllability analysis. J. Phys. A 37 (2004) 273. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Villani, Topics in optimal transportation. Graduate Studies in Mathematics. American Mathematical Society, cop., Providence R.I. (2003). [Google Scholar]
  23. W. Zhu and H. Rabitz, Potential surfaces from the inversion of time dependent probability density data. J. Chem. Phys. 111 (1999) 472–480. [Google Scholar]
  24. I.R. Zola and H. Rabitz, The influence of laser field noise on controlled quantum dynamics. J. Chem. Phys. 120 (2004) 9009–9016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.