Free Access
Volume 23, Number 4, October-December 2017
Page(s) 1715 - 1749
Published online 28 September 2017
  1. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin (2004) xiv+412. [Google Scholar]
  2. E. Allgower and K. Georg, Introduction to numerical continuation methods. Vol. 45 of Classics in Applied Mathematic. SIAM, Philadelphia, PA, USA (2003) xxvi+388. [Google Scholar]
  3. V.G. Boltyanskiĭ, R.V. Gamkrelidze, E.F. Mishchenko and L.S. Pontryagin, The Mathematical Theory of Optimal Processes. Classics of Soviet Mathematics. Gordon and Breach Science Publishers, New York (1986) xxiv+360. [Google Scholar]
  4. F.J. Bonnans, P. Martinon and V. Grélard, Bocop - A collection of examples. Technical report, INRIA (2012). RR-8053. [Google Scholar]
  5. B. Bonnard and M. Chyba, Singular trajectories and their role in control theory. Vol. 40 of Mathematics & Applications. Springer-Verlag, Berlin (2003) xvi+357. [Google Scholar]
  6. B. Bonnard, M. Claeys, O. Cots and P. Martinon, Geometric and numerical methods in the contrast imaging problem in nuclear magnetic resonance. Acta Appl. Math. 135 (2014) 5–45. [Google Scholar]
  7. B. Bonnard and O. Cots, Geometric numerical methods and results in the control imaging problem in nuclear magnetic resonance. Math. Models Methods Appl. Sci. 24 (2012) 187–212. [Google Scholar]
  8. B. Bonnard, L. Faubourg, G. Launay and E. Trélat, Optimal Control With State Constraints And The Space Shuttle Re-entry Problem. J. Dyn. Control Syst. 9 (2003) 155–199. [Google Scholar]
  9. A.E. Bryson, W.F. Denham and S.E. Dreyfus, Optimal programming problems with inequality constraints I: necessary conditions for extremal solutions. AIAA Journal 1 (1963) 2544–2550. [CrossRef] [Google Scholar]
  10. R. Bulirsch and J. Stoer, Introduction to numerical analysis, vol. 12 of Texts in Applied Mathematics. Springer-Verlag, New York, 2 edition (1993) xvi+744. [Google Scholar]
  11. J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems. Optim. Methods Softw. 27 (2011) 177–196. [Google Scholar]
  12. J.-B. Caillau and B. Daoud, Minimum time control of the restricted three-body problem. SIAM J. Control Optim. 50 (2012) 3178–3202. [Google Scholar]
  13. E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems. Vol. 8 of Springer Serie Comput. Math. Springer-Verlag, 2nd edn. (1993). [Google Scholar]
  14. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Vol. 14 of Springer Serie in Computational Mathematics, Springer-Verlag, 2nd edn. (1996). [Google Scholar]
  15. R.F. Hartl, S.P. Sethi and R.G. Vickson, A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37 (1995) 181–218. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Hascoët and V. Pascual, The Tapenade Automatic Differentiation tool: principles, model, and specification. Rapport de recherche RR-7957, INRIA (2012). [Google Scholar]
  17. D.H. Jacobson, M.M. Lele and J.L. Speyer, New Necessary Conditions of Optimality for Control Problems with State-Variable Inequality Constraints. J. Math. Anal. Appl. 35 (1971) 255–284. [Google Scholar]
  18. J. Gergaud and T. Haberkorn, Homotopy Method for minimum consumption orbit transfer problem. ESAIM: COCV 12 (2006) 294–310. [CrossRef] [EDP Sciences] [Google Scholar]
  19. B. De Jager, T. Van Keulen and J. Kessels, Optimal Control of Hybrid Vehicles, in Advances in Industrial Control. Springer Verlag (2013). [Google Scholar]
  20. S. Jan, Minimizing the fuel consumption of a vehicle from the Shell Eco-marathon: a numerical study. ESAIM: COCV 19 (2013) 516–532. [CrossRef] [EDP Sciences] [Google Scholar]
  21. C. Kirches, H. Bock, J. Schlöder and S. Sager,Mixed-integer NMPC for predictive cruise control of heavy-duty trucks, In Europ. Control Conf. Zurich. Switzerland (2013) 4118–4123. [Google Scholar]
  22. I. Kupka, Geometric theory of extremals in optimal control problems. i. the fold and maxwell case. Trans. Amer. Math. Soc. 299 (1987) 225–243. [MathSciNet] [Google Scholar]
  23. H. Maurer, On optimal control problems with bounded state variables and control appearing linearly. SIAM J. Control Optim. 15 (1971) 345–362. [Google Scholar]
  24. A. Merakeb, F. Messine and M. Aidène, A Branch and Bound algorithm for minimizing the energy consumption of an electrical vehicle. 4OR 12 (2014) 261–283. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.J. Moré, B.S. Garbow and K.E. Hillstrom, User Guide for MINPACK-1, ANL-80-74, Argonne National Laboratory (1980). [Google Scholar]
  26. S. Sager, M. Claeys and F. Messine, Efficient upper and lower bounds for global mixed-integer optimal control. J. Global Optimiz. 61 (2015) 721–743. [CrossRef] [Google Scholar]
  27. H. Schättler and U. Ledzewicz, Geometric optimal control: theory, methods and examples. Vol 38 of Interdisciplinary applied mathematics. Springer Science and Business Media, New York (2012) xiv+640. [Google Scholar]
  28. A. Sciarretta and L. Guzzella, Control of hybrid electric vehicles. IEEE Control Syst. Mag. 27 (2007) 60–70. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.